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ABSTRACT 

Socially connected brains: Mechanisms that shape our social networks and positions within them 

Noam Zerubavel 

 

The overarching goal of the present research is to gain a better understanding of 

mechanisms that shape our interpersonal ties and social networks by investigating their 

associated brain bases in naturally occurring groups.  All three studies rely on a novel round-

robin neuroimaging paradigm that incorporates group members as both participants in the fMRI 

scanner (perceivers) and stimuli (targets) presented during a naturalistic face-viewing task. Study 

1 elucidates how group members’ popularity is tracked by neural systems underlying valuation 

(i.e., processing reward value and evaluating others’ motivational significance), which in turn 

engage social cognition systems that facilitate understanding others’ mental states.  Individual 

differences in the sensitivity of this neural mechanism are examined and found to correlate with 

perceivers’ own popularity.  Studies 2 and 3 extend the paradigm developed in Study 1 to 

incorporate social network data collected in a longitudinal context, and further test whether 

neural measures collected during the initial stages of group formation can prospectively predict 

group members’ future liking ties (Study 2) and social network centrality (Study 3).  In Study 2, 

neural activity in the aforementioned valuation systems predicts newly acquainted group 

members’ future—but not current—idiosyncratic liking of one another.  Further analyses suggest 

this effect reflects only one facet of a far more nuanced interpersonal phenomenon implicated in 

the eventual emergence of dyadic liking reciprocity: individuals’ initial liking preferences are not 

personally tracked by their own brains’ idiosyncratic valuation responses to particular group 

members, but rather interpersonally tracked by the neural valuation responses they uniquely 
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evoke in those particular group members; moreover, each dyad member’s idiosyncratic valuation 

activity influences both their own and each other’s future liking.  Having established in Studies 1 

and 2 a paradigm for measuring how social network members implicitly evaluate one another, 

Study 3 extends it to include oneself (i.e., the perceiver) as an evaluate target of social 

perception.  Revisiting the Study 1 social network members’ data, enhanced valuation activity in 

response to oneself (relative to others) correlates positively with questionnaire measures of 

dispositional narcissism (but not self-esteem) and negatively with sociometric popularity.  Using 

the data from Study 2, the trait narcissism effect is replicated and extended to a context in which 

the “others” are newly acquainted group members.  This longitudinal data also reveals that the 

neural measure of narcissistic self-valuation prospectively predicts future (un)popularity, even 

controlling for initial levels of popularity.  Considered together, this research aims to integrate 

conceptual and methodological frameworks across social psychology (e.g., round-robin 

experimental designs), cognitive neuroscience (e.g., fMRI), and sociology (e.g., social network 

analysis). 
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Humans are a fundamentally social species: we are embedded in uniquely complex social 

networks and possess unique social-cognitive capacities for navigating them. Our brains are 

thought to have evolved under selective pressures to automatically process and efficiently 

respond to relevant social information. Recent advances in neuroimaging technology have made 

it possible for cognitive neuroscientists as well as social psychologists to examine these neural 

processes at work. Typically, this research utilizes functional magnetic resonance imaging 

(fMRI) to investigate patterns of neural activation while viewing social stimuli that vary on the 

basis of experimentally manipulated dimensions like race, gender, or normative attractiveness – 

variables that can be engineered using computer-generated models or morphed faces.  

However, many other social constructs of import to psychology and related fields—such 

as interpersonal affiliation, dyadic reciprocity, or social status—are not practically and/or 

ethically amenable to experimental manipulation.  The irony is that while these interpersonal 

phenomena emerge organically and pervasively in real-world social contexts, they are difficult to 

convincingly translate into controlled lab settings. Given this methodological tension between 

ecological validity and experimental control, the majority of neuroimaging researchers have 

opted to utilize less naturalistic stimuli that they could artificially manipulate. For instance, fMRI 

studies of social status perception have operationally defined social status using performance on 

a dot array discrimination task (Zink et al., 2008), dominant versus submissive body posture 

(Freeman, Rule, Adams Jr, & Ambady, 2009; Marsh, Blair, Jones, Soliman, & Blair, 2009), and 

celebrities with known status relations (e.g., Prince Harry and Queen Elizabeth II) (Farrow et al., 

2011). While neuroimaging studies benefit from the experimental control afforded by such 

stimuli, they leave open questions about the mental processes underlying status perception—and 

other interpersonal phenomena more generally—in real-world social contexts (Neisser, 1976; 
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Zaki & Ochsner, 2009; Zaki & Ochsner, 2012). 

Many of these same social constructs have also been of longstanding interest to 

sociologists, even if not the associated psychological processes or neural mechanisms. The 

sociological approach—to researching these interpersonal phenomena and to social science 

theory more generally—emphasizes the analysis of social structure, that is, the patterned social 

arrangements that organize individuals and their interpersonal ties.  Over the last century, 

sociologists have developed and enhanced the techniques of social network analysis (SNA) in 

order to precisely measure and quantify social-structural characteristics of individuals, dyads, 

and cliques embedded within social networks.  Because sociologists are primarily interested in 

distilling the structural principles underlying the organization of interpersonal ties, these analytic 

techniques typically control for individual-level characteristics of interest to psychologists. In 

other words, the sociological perspective regards many psychological variables as idiosyncratic 

quirks—“noise” in the system that interferes with the social-structural “signal” of interest.  

By contrast, social psychologists and neuroscientists are primarily interested in 

explaining phenomena in terms of intra-individual psychological processes and neural 

mechanisms, respectively. As such, they conventionally regard the social structures in which 

individual participants are embedded as background “noise” interfering with the psychological or 

neural “signal” they seek to capture within each individual. From the perspective of an 

experimental researcher, it should not be surprising that pre-existing interpersonal relationships 

between individuals participating in a study (or between a participant and another person 

incorporated as a stimulus in the study) constitute thorny methodological obstacles.  Even social 

psychologists who are interested in interpersonal phenomena and study group processes often 

rely on minimal- or zero-acquaintance paradigms, in which the study’s participant groups consist 
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of individuals with no prior relationships. This experimental protocol provides a social-structural 

“clean slate” for psychological research by intentionally eliminating the very network structures 

studied in sociological research.  

The dissertation research presented here attempts to integrate the conceptual and 

methodological frameworks of cognitive neuroscience, social psychology, and sociology. This 

interdisciplinary approach conceptualizes all three disciplines’ levels of analysis—neural 

mechanism, psychological process, and social structure—as important “signals” of scientific 

research. Rather than ignoring any of these levels, we obtain measurements across all three; 

likewise, rather than statistically controlling for what might otherwise be considered “nuisance” 

variables by a particular research tradition, we analyze how interrelated variables mutually 

influence one other across different levels of analysis. How else can we hope to understand 

social phenomena that shape and are shaped by brains of individuals who interact in relationships 

that are embedded in social networks? 

This work advances a radically social and naturalistic approach to studying the brain 

bases of social perception by emphasizing its fundamentally interpersonal and interdependent 

nature in the following ways: (1) recruiting real-world groups as study participants, (2) 

incorporating each group member as both a study participant and experimental stimulus, (3) 

integrating social network analysis to measure social-structural characteristics of individuals and 

relationships within these groups, and (4) directly challenging the assumption of independence 

that underlies empirical research in neuroscience and psychology. 

To my knowledge, Study 1 represents the first fMRI study to recruit members of pre-

existing, real-world groups (Zerubavel, Bearman, Weber, & Ochsner, 2015), an approach 

pursued throughout the entirety of the dissertation research. Studies 1-3 also rely on a novel 
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round-robin neuroimaging paradigm that incorporates group members as both participants in the 

fMRI scanner (perceivers) and stimuli (targets of social perception) presented during a 

naturalistic face-viewing task. This round-robin design enables analyses at the level of the 

perceiver (Study 1), the target (Study 1 and Study 2), and perceiver X target interactions unique 

to each interpersonal relationship (Study 2 and—by conceptualizing self-perception as an 

interpersonal process in which perceivers are also the targets of their own social perception—

Study 3; see Kwan, John, Kenny, Bond, & Robins, 2004). In addition, all three studies utilize 

sociometric instruments and social network analysis to precisely measure group members’ 

relative positions and interpersonal ties within the network structure; then, participants’ fMRI 

data can be analyzed as a function of these individual (i.e., perceiver-level or target-level) and 

relational social network variables. In Studies 2 and 3, the analytic strategy is flipped such that 

neural measures are leveraged to prospectively predict future liking (Study 2) and sociometric 

popularity (Study 3).  

By recruiting group members with real-world relationships, incorporating them as both 

participants and stimuli, and utilizing social network analysis, the approach advanced by this 

dissertation fundamentally opposes a central tenant of psychology and neuroscience—the 

assumption of independence—which maintains that data from each individual unit (i.e., person) 

is unrelated to data from other units. The assumption of independence serves as the foundation 

for both fields’ research paradigms (including participant recruitment and preparation of 

experimental stimuli), the statistical analysis of data, and—perhaps most critically—the 

conceptualization of persons as essentially independent entities. The present studies 

diametrically oppose this assumption of independence, instead capitalizing on the 

interdependence of group members methodologically (with the round-robin design), analytically 
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(with social network analysis), and theoretically (by conceptualizing individuals as inextricably 

embedded within interpersonal contexts). Traditionalists in the fields of psychology and 

neuroscience would be right to criticize this approach as iconoclastic. So consider yourselves 

forewarned: this dissertation research on interpersonal phenomena and their associated 

intrapersonal processes violates the assumption that people are fundamentally independent. 
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Study 1: 

Neural Mechanisms Tracking Popularity in Real-World Social Networks 
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Introduction 

Humans are a fundamentally social species, and the social networks in which we are 

embedded significantly determine our physical and psychological well-being (Smith & 

Christakis, 2008). Effectively navigating interactions within these networks requires efficient 

mechanisms for processing social information about network members. This ability is so 

important that it may be among the foremost computational challenges that influenced primate 

evolution, particularly the dramatic development of our ‘social brains’ (Dunbar, 2012; Silk, 

2007). 

Differences in popularity reflect status inequalities that shape social interaction within 

virtually all human groups across an enormous array of contexts, from classrooms to military 

barracks to voluntary associations and beyond (Davis, 1970; Krantz & Burton, 1986; Lansu, 

Cillessen, & Karremans, 2013; Moreno, 1934; Vaughn & Waters, 1981).  For decades, social 

scientists have used sociometric assessment and social network analysis (SNA) to measure the 

organization of groups and individuals’ positions within them.  Using these techniques, the 

extent to which each group member is collectively liked by group members – termed sociometric 

popularity – can be quantified (Moreno, 1934; Newcomb, 1963; Wasserman & Faust, 1994).  

Highly likeable, individuals attract group members and elicit their affiliation with warmth, 

altruism, and related traits like agreeableness (Henrich & Gil-White, 2001; Moreno, 1934; 

Newcomb, 1963; Wiggins & Trapnell, 1996). Sociometric popularity disparities arising from 

asymmetries in group members’ liking ties are present in virtually all human groups and 

constitute a fundamental basis for status differentiation (Davis, 1970; Moreno, 1934).   

The fact that differences in popularity have important behavioral consequences raises the 

question of how we recognize these differences in the first place.  Consider, for example, that in 
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our everyday social networks, we recognize that certain group members are collectively liked 

more than others, even when this consensus preference differs from our own.  Adults and even 

children can perceive other group members’ asymmetric liking ties, detect differences in their 

relative popularity, and accordingly orient attention and affiliative behavior toward popular 

individuals (Krantz & Burton, 1986; Lansu et al., 2013; Moreno, 1934; Vaughn & Waters, 

1981).  Achieving such acute sociometric awareness and attunement to popular group members 

might feel like second nature to us, yet little is known about the underlying neural mechanisms.  

Here, we combined functional magnetic resonance imaging (fMRI) and SNA to investigate how 

the human brain tracks the popularity of members of real-world social networks.  

To provide new insights into the neural mechanisms that undergird navigation of our 

complex social worlds we addressed three inter-related questions: First, which brain systems 

track real-world popularity?  Second, what is the functional organization of those systems?  And 

third, does one’s own status predict more or less neural attunement to others’ status?  Although 

no prior human research has investigated these questions, the extant literature suggests that two 

distinct types of brain systems may be involved in tracking popularity. 

The first is comprised of the ventromedial prefrontal cortex (vmPFC), ventral striatum 

(VS), and amygdala. These densely interconnected regions (Haber & Knutson, 2009), henceforth 

referred to collectively as the valuation system, are consistently implicated in processing the 

affective value and motivational significance of various stimuli, including other people 

(Adolphs, 2003; Doré, Zerubavel, & Ochsner, 2014; Güroğlu et al., 2008; Haber & Knutson, 

2009; Krienen, Tu, & Buckner, 2010; Zink et al., 2008).  Although human neuroscience research 

has yet to investigate sociometric popularity, nonhuman primate researchers have found that 

neurons in these regions signal group members’ dominance rank (Azzi, Sirigu, & Duhamel, 
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2012; Klein & Platt, 2013; Watson & Platt, 2012) and proposed that vmPFC, VS, and amygdala 

interact to encode, monitor, and signal other individuals’ social value (Klein, Shepherd, & Platt, 

2009).  If tracking group members’ popularity depends on the motivational significance and 

social value attributed to them, then valuation system activity should track targets’ sociometric 

popularity. 

The second network is comprised of the dorsomedial prefrontal cortex (dmPFC), 

temporoparietal junction (TPJ), and precuneus.  These interconnected regions, henceforth 

referred to collectively as the social cognition system, are consistently activated in neuroimaging 

studies involving judgments about others’ psychological characteristics, mental states, and 

intentions (Adolphs, 2003; Denny, Kober, Wager, & Ochsner, 2012; Doré et al., 2014) or the 

passive viewing of social stimuli—such as familiar faces—for which we might spontaneously 

make such attributions (Gobbini & Haxby, 2007).   Although no neuroscience work has asked 

how these systems might track sociometric popularity, behavioral research shows that people are 

particularly concerned with understanding high-status individuals’ mental states (especially how 

they are viewed by them) and predicting their intentions (Dépret & Fiske, 1993; Fiske, 1993; 

Snodgrass, 1985, 1992).  If perceivers are preferentially motivated to understand popular 

(relative to unpopular) group members’ mental states, then social cognition system activity 

should scale with targets’ popularity.  

Based on these findings both the valuation and social cognition systems are candidate neural 

networks for tracking group members’ popularity. Our primary objective was to test these 

possibilities, recognizing that they are not mutually exclusive.  Indeed, the two systems are 

functionally distinct but their interactions are often critical for diverse social behaviors (Doré et 

al., 2014). 
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To address these questions, two different groups of well-acquainted participants were 

recruited from two voluntary student organizations with equivalent size and affiliation network 

structures (see Fig. 1, Table 1, and Methods).  Specifically, sociometric popularity was indexed 

by individuals’ degree prestige within the directed liking network, standardized by group.  This 

measure of popularity aggregates liking ratings received by each group member and thus 

intuitively reflects how much individuals are collectively liked by their fellow group members 

(Wasserman & Faust, 1994). 

 

 

 

Fig. 1.  Social network structure of study participants (N = 26) in two voluntary student 
organizations (clubs; participant information detailed in Methods and Table 1).  Each network 
was comprised of 13 well-acquainted members.  Each node represents one person.  Directional 
arrows represent group members’ directed liking relations (for visual clarity, only ties in the 
upper quartile are displayed).  Node size reflects sociometric popularity – the extent to which the 
group collectively likes that person.  Sociometric popularity was indexed by degree prestige, 
which we then standardized by group (Methods).  Calculated by simply summing the weights of 
all liking ties received by an individual, this SNA metric represents an intuitive and 
straightforward index of popularity (Wasserman & Faust, 1994). 
 

Organization A
n = 13

Organization B
n = 13



www.manaraa.com

12 

To model everyday social encounters within face-to-face social networks, we developed a 

round-robin neuroimaging paradigm in which group members were both the target stimuli 

presented during the scan and the perceivers that viewed them.  A cover task guided perceivers 

to make simple judgments about briefly presented photographs of target faces. To provide a 

strong test of our hypotheses about the neural systems tracking targets’ sociometric popularity, 

our primary analyses were based on independently identified valuation and social cognition 

networks that were localized using two additional tasks that were completed in the same 

scanning session (see Methods).  We then used combinations of multi-level regression and 

mediation analyses to ask how activity within each network tracked targets’ sociometric 

popularity during this face-viewing task, how activity in these systems interacted, and how a 

perceiver’s own popularity impacted their sensitivity to differences in target popularity.  

Methods 

Participants.  Participants were 26 healthy young adults (12m, 14f; mean age = 28.7, SD 

= 2.3) recruited from two different voluntary student club organizations with equivalent size and 

affiliation network structures (13 members from each; see Fig. 1 and Table 1) at a large 

university in the United States. Critically, this recruitment achieved several objectives.  First, 

face-to-face organizations of this size were necessary to ensure that group members were 

sufficiently well-acquainted with one another (mean duration of relationship = 8.5 months, SD = 

5.0).  Second, for groups of this size if was feasible for each participant’s face to be presented as 

a stimulus (target) with ten repetitions (multiple repetitions being necessary to estimate blood 

flow responses to each face) during the face-viewing task in the scan session.  Third, selecting 

two such groups with equivalent size and affiliation network structures enabled us to aggregate 

their data and analyze between-subject (perceiver) popularity effects. 
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 Initial recruitment yielded 100% member response rate in both organizations, however 

not all met the inclusion criteria to participate in each of the study phases. Out of 28 total 

individuals comprising both groups, 26 (93%) were eligible, willing, and able to participate in 

the study; among the 26 participants, all 26 (100%) completed the initial session in which the 

social network instruments were administered, 25 (96%) were photographed and incorporated as 

targets (face stimuli) in the subsequent fMRI face-viewing task, while 21 (81%) constituted 

perceivers who completed the fMRI scanning session (Table 1). Participants were English-

speaking and had normal or corrected-to-normal vision. They were screened for a history of 

serious neuropsychiatric disorders, head injury, and other conditions that prevented scanning 

(e.g., a pacemaker, claustrophobia) prior to taking part in the fMRI scanning session. 

Beyond these core participants, 40 additional participants were recruited via Mechanical 

Turk to provide normative ratings of stimuli used in the fMRI face-viewing task. 20 of these 

participants (7m, 13f; mean age = 35.9, SD = 14.6) rated faces based on attractiveness, and 

another 20 (10m, 10f; mean age = 34.8, SD = 12.9) rated faces based on trustworthiness.  These 

normative ratings of stimulus faces could then be used as covariates (to rule out potential 

confounds associated with target facial attributes) in subsequent analyses. 

All participants received monetary compensation and provided informed consent 

following the standards of the Columbia University Institutional Review Board.  
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Table 1.  Tabulation of group members included in each study phase. 
 
 Total Organization A Organization B 
Non-Participants 2 

(2f) 
2 

(2f) 
-- 

Participants 26  
(12m, 14f) 

13  
(5m, 8f) 

13  
(7m, 6f) 

Targets:  
Incorporated in round-robin fMRI  
face-viewing task as stimuli 

25  
(12m, 13f) 

13  
(5m, 8f) 

12  
(7m, 5f) 

Perceivers:  
Incorporated in round-robin fMRI  
face-viewing task as subjects 

21  
(10m, 11f) 

9  
(3m, 6f) 

12  
(7m, 5f) 

 
 
 

Procedure and design. The study was comprised of two sessions.  In a preliminary 

session, sociometric instruments and self-report questionnaires were administered, and 

photographs were taken of participants’ faces (to be used subsequently in the fMRI face-viewing 

task). In a second session, participants underwent fMRI scanning while completing several tasks 

described below.  For all computerized tasks in both sessions, stimulus presentation and 

behavioral data acquisition were controlled using E-Prime 2.0 (Psychology Software Tools, 

Inc.).  For tasks completed in the fMRI scanning session, visual stimuli were displayed on a 

projection screen using a LCD projector and viewed via a rear-projecting mirror. 

Sociometric assessment and social network analysis (SNA).  Sociometric assessments 

of group members’ affiliative relations and resulting network structure were collected from 

participants during the first session.  These assessments were conducted via a computerized peer-

rating paradigm in which participants rated how much they liked each group member (presented 

in randomized order) on a sliding visual analog scale anchored by the labels “not very” and 

“very” on opposite ends.  This sociometric instrument provided a continuous measure of 
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personal liking (i.e., affiliation tie strength) between group members that was used as a covariate 

in analyses and also to compute each group member’s popularity.  Specifically, sociometric 

popularity was indexed by individuals’ degree prestige (alternatively referred to as indegree 

centrality) within the directed liking network (Wasserman & Faust, 1994), which we then 

standardized by group.  In other words, liking ratings received by each group member were 

summed for that individual and then standardized to z scores within group.  Using these 

sociometric assessments and network analyses thus generated a popularity index that reflects 

how much individuals are collectively liked by their fellow group members. 

Round-robin fMRI face-viewing task.  Stimuli for the fMRI face-viewing task were 

prepared from photographs of participants.  During the preliminary session, participants’ faces 

were photographed with affectively neutral facial expression and gaze directed straight at the 

camera.  These photographs were cropped and converted to grayscale images with equal 

luminance.  In addition, a “ghost face” stimulus image representing the superimposition of all 

group members’ faces was prepared for each group following methods used in prior face 

perception research (Taylor et al., 2009).  The face-viewing task implemented a rapid event-

related design that included 10 repetitions of each stimulus face presented in pseudorandomized 

order.  Faces were presented for 1000ms and interstimulus intervals (ISIs) consisting of white 

fixation cross on black background were jittered between 1500 ms and 11500 ms (mean duration 

of ISI=3500 ms).  Perceivers viewed faces of targets while performing a simple cover task in 

order to maintain their alertness throughout.  Specifically, participants were instructed to press a 

button with their pointer (second) finger each time a group member’s face was presented and a 

different button with their ring (fourth) finger each time a “ghost face” was presented (~9% of 

total presentations). 
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Independent functional localizer task: Valuation system.  Two functional localizer 

tasks were completed at the end of the scanning session. Participants completed the monetary 

incentive delay (MID) task (Knutson, Westdorp, Kaiser, & Hommer, 2000) to independently 

identify valuation regions active during the anticipation and receipt of monetary rewards (Tamir 

& Mitchell, 2012; Zaki, Schirmer, & Mitchell, 2011). The MID task included 30 trials in which 

it was possible to win a reward (reward-possible trials) intermixed with 15 trials in which 

winning a reward was not possible (neutral trials).  Each trial of the MID task began with a 500 

ms presentation of one of two cue symbols: a green square indicated that the current trial offered 

an opportunity to win $1 (reward-possible trial); a red square indicated that the current trial did 

not offer an opportunity to win money (neutral trial).  Following the cue symbol, there was a 

delay interval (with randomly determined duration between 2000 and 2500 ms) and then a target 

stimulus (yellow star) was briefly presented.  On reward-possible trials, participants would win 

$1 if they made a button press while the target stimulus was displayed and $0 if the button press 

was made prior to the target onset or after the target offset.  On neutral trials, although no money 

could be earned, participants were instructed to still make a button press while the target stimulus 

was displayed.  Following the target stimulus offset, feedback (i.e., the amount earned on that 

trial—either $0 or $1—and the total cumulative earnings) was presented for 500 ms.  The 

duration of the target stimulus presentation was adjusted algorithmically (within the range of 150 

to 550 ms) based on task performance up until that point; specifically, the algorithm was 

intended to generate a two-thirds success rate on reward-possible trials.  The algorithm 

succeeded in adjusting task difficulty such that participants earned money on ~20 out of the 30 

reward-possible trials (mean wins = 19.8).  Five participants were unable to complete the MID 

task due to technical issues. 
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Trials in which participants won monetary rewards were contrasted to those in which 

they could not (win trials > neutral trials), encompassing both the anticipation and feedback 

phases of each trial. This analysis (thresholded at P < 0.05 corrected) revealed activation peaks 

consistent with previous studies using the MID task (Hommer et al., 2003; Knutson et al., 2000; 

Tamir & Mitchell, 2012; Zaki et al., 2011) in regions of a priori interest: vmPFC (-3, 48, -6), VS 

(0, 9, -3), and amygdala (-21, -6, -12 and 18, -3, -12).  We then defined spherical ROIs with a 

radius of 8mm around these peaks (Tamir & Mitchell, 2012; Zaki et al., 2011) (Fig. 2A). The 

resulting spherical ROIs were 2109 voxels. For the subcortical structures (VS and amygdala), 

these spheres were then anatomically constrained using structural masks obtained from FSL: for 

VS, the Oxford-GSK-Imanova Structural-Anatomical Striatal Atlas constrained the ROI to 39 

voxels; for amygdala, the Harvard-Oxford Atlas constrained the ROI to 1592 voxels). 

Independent functional localizer task: Social cognition system.  We adapted a well-

validated person judgment task (Ochsner et al., 2005) as an independent functional localizer to 

identify social cognition regions supporting two kinds of judgments relevant in interactions with 

group members: evaluating target group members’ mental states and traits (e.g., ‘to what extent 

is [target] helpful?’) and predicting how targets perceive them (e.g., ‘to what extent does [target] 

see me as lonely?’). The task implemented a rapid event-related design comprising 240 judgment 

trials lasting 3500 ms each and inter-trial intervals (ITIs) consisting of a white fixation cross on 

black background were jittered between 1500 ms and 11000 ms (mean duration of ITI = 4000 

ms).  For each of 40 trait adjectives (20 positive, 20 negative), participants made six kinds of 

judgments using a five-point scale: you-about-you, you-about-other1, you-about-other2, other1-

about-you, other2-about-you, and active baseline curved line judgments.  On you-about-you 

trials, participants judged the extent to which the trait adjective described them (1 = not very; 5 = 
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very).  On you-about-other1 and you-about-other2 trials, participants judged the extent to which 

the adjectives described one of two group members.  On other1-about-you and other2-about-you 

trials, participants predicted the extent to which one of two group members would judge the 

adjective as describing them (i.e., the participant).  On curved line trials, as an active baseline 

task that matched non-social aspects of the other judgment trial types, participants judged the 

extent to which the trait word contained curved lines as opposed to straight lines (1 = very few, 

<20% curved lines; 5 = very many, >80% curved lines).  Trial types were presented in a 

pseudorandom counterbalanced order and distributed across the task’s 4 runs such that each run 

included 10 trials (5 with positive traits, 5 with negative traits) of each judgment type.  As 

detailed below, of interest for this study were activations common to both you-about-other and 

other-about-you judgment trials relative to active baseline curved line trials.  Data relating to 

you-about-you trials were collected for other studies to be analyzed and reported separately. 

We conducted a whole-brain conjunction analysis (thresholded at P < 0.05 corrected) to 

localize activation present in both you-about-other and other-about-you trials relative to active 

baseline curved line trials.  This analysis revealed clusters with activation peaks in regions of a 

priori interest that were consistent with previous neuroimaging studies using similar social-

cognitive tasks (Denny et al., 2012): dmPFC (0, 60, 21), precuneus (-3, -57, 21), and left (-60, -

60, 24) and right TPJ (54, -60, 21).  As with the valuation localizer, we defined spherical ROIs 

with a radius of 8mm around the observed activation peaks (Fig. 2B). For dmPFC and left TPJ, 

the 8mm-radius spheres were anatomically constrained so as not to extend beyond the 

boundaries of the brain (resulting in ROIs comprised of 2066 and 1701 voxels, respectively). 

Imaging acquisition and analysis.  Whole-brain fMRI data were acquired on a 1.5 Tesla 

GE system. Functional images were acquired with a T2*-sensitive EPI blood oxygenation level 
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dependent (BOLD) sequence using the following parameters: TR = 2000 ms; TE = 34 ms; flip 

angle = 90°; field of view = 22.4cm × 22.4cm; matrix array size = 64 × 64; each volume 

consisted of 28 slices with slice thickness = 4mm and no inter-slice gap. High-resolution 

anatomical images with 1mm × 1mm × 1mm resolution were acquired with a T1-sensitive SPGR 

sequence at the end of the scan session. 

In each of the two runs comprising the face-viewing task, 167 volumes (for participants 

in Organization A) and 157 volumes (for participants in Organization B) were acquired.  (The 

difference in volumes acquired was due to the fact that the face task for Organization A included 

one more target than it did for Organization B.)  For both groups, the person judgment task 

consisted of four runs of 230 volumes each, while the MID task consisted of one run of 115 

volumes.  The initial four “dummy” volumes of each run were discarded prior to analysis.  

Functional images were preprocessed using SPM8 software (Wellcome Department of 

Cognitive Neurology, UCL), including slice-timing correction, motion-correction, realignment, 

coregistration between each participant’s functional and anatomical data, normalization to a 

standard template (Montreal Neurological Institute; MNI) using segmentation parameters, 3mm 

isometric voxels, and spatial smoothing using a Gaussian kernel (full-width at half-maximum = 

6mm). 

Data for each of the tasks were subjected to a first level of regression, separately for each 

subject, using an ordinary-least-squares general linear model (GLM) implemented with Neuroelf 

v0.9c software (neuroelf.net). Task-based regressors are described below. Each of the GLMs 

included, in addition to the task-related regressors, the 6 motion parameters as estimated during 

realignment as well as a DCT-based basis set covering low-frequency up to 1/80Hz to account 

for signal variability introduced by head motion and temporal drifts. The GLM for the face-
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viewing task included one regressor for each target face (including the ghost face stimulus), 

representing the 10 repetitions of each respective face (12 repetitions for the ghost face). Each of 

these regressors was created by convolving the canonical hemodynamic response function (HRF) 

with a series of boxcars representing the 1000 ms intervals during which a particular face was 

presented.  The GLM for the MID task included three task regressors corresponding to three trial 

types: wins, misses, and neutral.  Each of these regressors was created by convolving the 

canonical HRF with a series of boxcars representing the 3000 ms interval encompassing 

anticipation (delay) and feedback phases of each trial.  The GLM for the person judgment task 

included task regressors for each the 40 traits and 6 judgment types (i.e., you-about-you, you-

about-other1, you-about-other2, other1-about-you, other2-about-you, and curved lines).  Each of 

these task regressors was created by convolving the canonical HRF with a series of boxcars 

representing the 3500 ms duration of judgment trials.  

The output of these first-level regressions was a series of parameter estimate (beta) maps 

used in the next group level of analyses. For the person judgment task, an additional intermediate 

step averaged a subset of these beta maps to obtain unbiased estimates of the BOLD response to 

a set of judgment trial types: you-about-other1 and you-about-other2 beta maps were combined 

into you-about-other beta maps; likewise, other1-about-you and other2-about-you were 

combined into other-about-you beta maps; additionally, the 40 individual trait beta maps were 

combined for each judgment type.  For the face-viewing task, beta maps corresponding to trials 

on which participants viewed either the ghost face or themselves were discarded prior to the next 

level of analyses.  
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Results 

Target popularity analyses: ROI approach. For our primary analysis, we first needed 

to independently localize regions of interest (ROIs) related to affective valuation and social 

cognition.  Following the established analytic approach of previous neuroimaging studies, the 

monetary incentive delay (MID) task (Knutson et al., 2000) was used to independently localize 

regions active during anticipation and receipt of monetary rewards (Tamir & Mitchell, 2012; 

Zaki et al., 2011).  The social cognition system localizer was a well-validated person judgment 

task (Ochsner et al., 2005) commonly used to identify regions involved in thinking about others’ 

mental states and traits, here adapted such that perceivers made judgments about target group 

members and predicted targets’ judgments of them.1 For each functional localizer task we then 

defined 8mm radius spherical regions of interest (ROIs) surrounding activation peaks that fell 

within our a priori ROIs (see Methods). From the MID task we obtained anatomically 

constrained functional ROIs in vmPFC, ventral striatum, and amygdala (Fig. 2A). The person 

judgment task revealed clusters with peaks in dmPFC, precuneus, and bilateral TPJ (Fig. 2B).  

The activation peaks we found are consistent with previous neuroimaging studies using the MID 

(Hommer et al., 2003; Knutson et al., 2000; Tamir & Mitchell, 2012; Zaki et al., 2011) and 

person judgment tasks (Denny et al., 2012). 

                                            
1 As noted earlier, these are precisely the kinds of judgments which people are preferentially 
motivated to make about high-status (relative to low-status) targets. 
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Fig. 2.  Popularity of targets (group members presented as stimuli during the face-viewing task) 
predicted activity in each of the valuation and social cognition regions of interest (ROIs; all Ps < 
0.05) except rTPJ (P > 0.5), even when controlling for perceivers’ own liking of target and other 
potential confounds (Table 2).  Core brain regions underlying (A) valuation and (B) social 
cognition – and corresponding ROIs – were identified using two independent functional localizer 
tasks (Methods). Each task identified a set of commonly co-activated and strongly 
interconnected regions that are referred to collectively as the valuation and social 
cognition systems, respectively. Illustrations of the parametric relationship between target 
popularity and betas extracted from (C) valuation system ROIs and (D) social cognition system 
ROIs.  Note that activity is averaged across perceivers for visual clarity.  vmPFC, ventromedial 
prefrontal cortex; VS, ventral striatum; dmPFC, dorsomedial prefrontal cortex; lTPJ/rTPJ, 
left/right temporoparietal junction. 
 

 

We then asked whether activation within these independently localized valuation and 

social cognition ROIs scaled with the popularity of targets presented in the face-viewing task.  

To answer this question we regressed activation parameter estimates (betas) extracted from each 

ROI against target popularity, controlling for each perceiver’s liking of targets to ensure that 

analyses reflect neural sensitivity to how much target group members are collectively liked by 
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the group and not merely individually liked by the perceiver.2  Separate models were run for each 

ROI, with the dependent measure comprising beta values for all voxels within the ROI averaged 

together across the 10 repetitions of each target face presented to each perceiver. Linear mixed-

effects models (lme4 and lmerTest packages for R) with random intercepts at the subject 

(perceiver) level were fitted using restricted maximum likelihood estimation (REML) with the 

appropriate degrees of freedom calculated using the Kenward-Roger method (Table 2)(Kenward 

& Roger, 1997).  All hypotheses tests were two-sided with a statistical significance level of 0.05. 

These analyses revealed that target popularity was positively associated with activity in 

each of the ROIs identified by the valuation localizer task (Fig. 2C; vmPFC parameter estimate ± 

SE: 0.122 ± 0.059, P = 0.039; amygdala: 0.089 ± 0.038, P = 0.019; VS: 0.083 ± 0.041, P = 

0.047) and social cognition localizer task (Fig. 2D; dmPFC: 0.194 ± 0.079, P = 0.015; 

precuneus: 0.127 ± 0.055, P = 0.022; lTPJ: 0.124 ± 0.059, P = 0.038).  The only ROI in which 

activity did not track target popularity was rTPJ (0.029 ± 0.045, P > 0.5), and was therefore was 

not included in the subsequent analyses. 

To rule out alternative explanations—that activation in valuation and social cognition 

regions reflected variables potentially confounded with popularity rather than popularity per 

se—additional regression analyses were run that accounted for perceiver-target relational 

characteristics (i.e., length of relationship, frequency of contact, hours per week spent together, 

and subjective ratings of interpersonal closeness and similarity) and target attributes (i.e., age, 

sex, and normative ratings of facial attractiveness and trustworthiness) by including these 

                                            
2 It is important to note that correlation between perceivers’ personal liking of targets and the rest 
of the group’s liking of those targets was relatively low (r = 0.22), corresponding to less than 5% 
of variance explained.  Moreover, whether or not perceiver’s own liking of target was partialled 
out, target popularity predicted activity in both valuation and social cognition systems (Ps < 
0.01; see below for details about system-level aggregation across valuation ROIs and social 
cognition ROIs, respectively). 
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covariates as fixed effects in the linear mixed-effect models described above.  The positive 

association between target popularity and parameter estimates extracted from each ROI proved 

robust, remaining statistically significant after accounting for the effect of these potential 

confounds (all Ps < 0.05; Table 2). 

To verify that these target popularity effects did not differ between groups, an additional 

model was run for each ROI that included all of the aforementioned parameters as well as two 

additional fixed effects for group membership (with -0.5 and 0.5 effect coding for each of the 

respective groups) and the interaction between group and target popularity. The main effect of 

target popularity on parameter estimates was robust to the inclusion of these additional 

parameters (all P’s < 0.05, two-tailed; for VS, P = 0.06, two-tailed); importantly, there was no 

main effect of group or interaction between group and target popularity for any ROI (all Ps > 

0.2). 
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Target popularity analyses: Whole-brain approach. To validate these results and 

complement our hypothesis-driven ROI analyses with a data-driven analytic approach, we also 

conducted a random-effects, parametric whole-brain regression analysis at the group level.  

Perceivers’ neural responses to group members (targets) during the face-viewing task were 

modeled as a function of targets’ popularity (as a subject-level random slope parameter), again 

controlling for each perceiver’s personal liking of individual targets (as a fixed effect) and 

including a random intercept for each perceiver.  By fitting perceiver-specific random slopes and 

conducting a whole-brain search for regions in which these random slopes differed significantly 

from 0, this mixed-effects approach was best suited to answer the question: Are there any regions 

in which activity reliably (i.e., across perceivers) corresponds to target popularity?   

This analysis replicated the ROI-based analysis: the same core valuation (vmPFC, 

amygdala, VS) and social cognition (dmPFC, precuneus, left TPJ) regions tracked significantly 

with target popularity (Fig. 3 and Table 3; whole-brain FWE-corrected P < 0.05 with uncorrected 

P < 0.001, k = 44 voxels; for amygdala and VS, FWE-corrected P < 0.05 using small volume 

correction). The analysis also revealed a cluster in middle frontal gyrus; as we had no specific 

predictions about the involvement of this region, the finding is reported without post hoc 

interpretation. It is worth noting that the whole-brain analysis utilized a two-tailed hypothesis to 

allow for testing of brain regions in which activity tracked negatively with target popularity; 

however, no such regions were found. See Fig. 4 for comparison of the distinct neural correlates 

of target popularity and liking. 
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Fig. 3. Parametric whole-brain regression analysis isolating brain regions tracking target 
popularity during the face-viewing task  (see Table 3).  Clusters were thresholded at P < 0.001, k 
= 44 voxels (whole-brain FWE-corrected, P < 0.05, two-tailed) except as noted below.  For 
ventral striatum and amygdala, subcortical structures of a priori interest, results were thresholded 
with small volume correction, FWE-corrected P < 0.05, two-tailed.  Replicating the findings of 
the ROI-based approach, activity in the same core valuation (vmPFC, amygdala, ventral 
striatum) and social cognition (dmPFC, precuneus, left TPJ) regions tracked significantly with 
target popularity.  The analysis also revealed a cluster in middle frontal gyrus, but was otherwise 
selective for our a priori hypothesized ROIs.  Although the whole-brain analysis utilized a two-
tailed hypothesis to allow for testing of brain regions in which activity tracked negatively with 
target popularity, no such regions were found.  vmPFC, ventromedial prefrontal cortex; dmPFC, 
dorsomedial prefrontal cortex; TPJ, temporoparietal junction; VS, ventral striatum. 
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Table 3.  Regions parametrically tracking target popularity during the face-viewing task, as 
identified by random-effects whole-brain analysis. 
 

 

The clusters revealed by the whole-brain analysis were then subjected to the additional 

analyses conducted for the ROIs (described above) to rule out alternative explanations for the 

observed relationship and to verify that these target popularity effects did not differ between 

groups.  We found that the positive association between target popularity and parameter 

estimates extracted from each cluster remained statistically significant even with the inclusion of 

fixed effects for all of the potential confounds listed above as well as group membership and the 

interaction between group and target popularity (all Ps < 0.01); moreover, there was no main 

effect of group or interaction between group and target popularity for any of the clusters (all Ps > 

0.2). 

 

 

  

 
      MNI Coordinates       t-values 

Region   
  

x y z 
 

k 
 

Max Mean 

vmPFC / Medial Frontal Gyrus (BA 11) 
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6.76 4.61 

dmPFC / Superior Frontal Gyrus (BA 10) 
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6.19 4.41 

TPJ / Superior Temporal Gyrus (BA 39) 
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Precuneus (BA 7) 
 
M 
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Middle Frontal Gyrus (BA 8) 
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-24 30 39 
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7.43 4.84 

Amygdala * 
 
R 

 
33 -3 -21 

 
-- 

 
4.34 3.74 

Ventral Striatum / Caudate * 
 
L 

 
-6 3 -3 

 
-- 

 
4.36 3.34 

Coordinates (in MNI space) refer to the peak activation in each cluster.  All clusters 
were thresholded at P < 0.001, k = 44 voxels (whole-brain FWE-corrected P < 0.05, 
two-tailed), except as noted below.  For subcortical structures of a priori interest, * 
reflects thresholding with small volume correction, FWE-corrected P < 0.05, two-tailed.   
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Fig. 4.  Primarily distinct patterns of neural activity associated with tracking (A) popularity of 
targets and (B) each perceiver’s own liking of targets during the face-viewing task.  To enable 
more comprehensive comparison, parametric whole-brain regression analyses are presented with 
relaxed cluster threshold (uncorrected P < 0.005; orange and blue signify relative activation and 
deactivation, respectively).  The results of this analysis provide empirical support for the 
conceptual distinction between sociometric popularity—the group’s collective preference—and 
the individual preferences from which it is comprised.  This is further corroborated by the 
observation that the perceiver’s own liking of a target explains less than 5% of the variance in 
everyone else’s liking for that target. 
 

Mediation analyses.  The observed correlations between target popularity and activity in 

valuation and social cognition regions confirmed our primary hypotheses, which led to our 

second question: do the two systems track popularity in parallel (independently) or serially, with 

one system assuming a primary role that mediates the popularity-activity relationship for the 

other?  We predicted the valuation system would function as mediator based on the 

aforementioned literatures in social psychology [i.e., it is high-status group members’ social 
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importance that motivates others to predict their mental states (Dépret & Fiske, 1993; Fiske, 

1993; Snodgrass, 1985, 1992)] and nonhuman primate neurophysiology [i.e., neurons in 

valuation regions encode social value and signal presence of high-status group members (Azzi et 

al., 2012; Klein & Platt, 2013; Klein et al., 2009; Watson & Platt, 2012)].   

To test this prediction we performed multilevel mediation analyses, assessing whether 

valuation system activity explains the observed relationship between target popularity and social 

cognition system activity.  First, parameter estimates extracted from vmPFC, amygdala, and 

VS—ROIs that had been independently localized by the MID task—were averaged to compute a 

composite measure of valuation system activity during the face-viewing task.  Parameter 

estimates from dmPFC, precuneus, and lTPJ—ROIs that had been independently localized by the 

person judgment task—were likewise aggregated to compute a composite measure of social 

cognition activity while viewing group members’ faces.  Multilevel mediation analyses were 

then implemented via the gsem (generalized structural equation model) estimation command in 

Stata 13 (StataCorp, 2013), with social cognition activity as the dependent “Y” variable, 

valuation activity as the mediator “M” variable, and target popularity as the predictor “X” 

variable.  As with the linear mixed-effects models in the target popularity main effect analyses 

above, the generalized structural equation models included random intercepts at the subject 

(perceiver) level and perceivers’ personal liking ratings of targets as a covariate.  Thus, the 

mediation analysis enabled us to quantify and statistically evaluate the extent to which increases 

in social cognition activity evoked by popular targets (independent of how much the individual 

perceiver liked them) were mediated by associated increases in valuation activity.  The nlcom 

command in Stata 13, which computes ‘delta method’ standard errors, was used to conduct two-

tailed significance tests of indirect paths.  
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Fig. 5. Activity in the valuation system (vmPFC, amygdala, and ventral striatum ROIs 
independently localized by the MID task) mediated the observed relationship between target 
popularity and social cognition system activity (dmPFC, precuneus, and left TPJ ROIs 
independently localized by the person judgment task), with 64.6% of the total effect mediated 
(P < 0.01).  See Fig. 2 and Methods for details on how these systems were defined and 
independently localized.  Further analyses confirmed that the data supported this mediation 
model over both (1) the alternative serial organization in which social cognition system activity 
operated as the mediator, and (2) the parallel organization in which the two systems’ activity 
independently tracked target popularity. 
 
 

We found that valuation activity mediated the association between target popularity and 

social cognition activity (see Fig. 5; indirect effect parameter estimate ± SE: 0.100 ± 0.039, P < 

0.01), with 64.60% of the total effect mediated.  Moreover, as assessed by Akaike's information 

criterion (AIC) and Bayesian information criterion (BIC), model fit was greater with valuation 

activity as the mediator (AIC = 734.43; BIC = 772.25) than with (1) the parallel organization in 

which the valuation activity and social cognition activity independently tracked target popularity 

(AIC = 902.10; BIC = 936.48), and (2) the alternative serial organization in which social 

cognition activity operated as the mediator (AIC = 736.96; BIC = 774.78).  To evaluate the 
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relative strength of these models and aid interpretation, AIC and BIC raw values were 

transformed into AIC and BIC weights, respectively (Wagenmakers & Farrell, 2004).  According 

to either measure, the model with valuation activity as mediator had 3.54 times greater strength 

of evidence than did the other two models combined. 

These results suggest that (1) a primary representation of sociometric popularity is value-

based or motivational in nature, and (2) social cognitive systems may be engaged in the presence 

of popular group members to the extent that valuation systems signal their motivational 

significance.  In such cases, social cognition systems may ready perceivers for effective 

interaction by supporting retrieval of knowledge about what target individuals are like and how 

they view us (precisely the two kinds of judgments elicited by the social cognition functional 

localizer task).  This knowledge is useful for predicting high-status individuals’ behavior and 

deciding how to act accordingly (Dépret & Fiske, 1993; Fiske, 1993; Snodgrass, 1985, 1992). 

Perceiver popularity: Neural analysis of interpersonal sensitivity. The finding that 

valuation system activity directly tracked target popularity led to our third question: does the 

strength of this relationship (i.e., attunement to group members’ popularity differences) relate to 

one’s own popularity?  In studies both of adults and children, popular individuals have more 

accurate perceptions of the affiliative social network structure that underlies differences in 

popularity (Bondonio, 1998; Casciaro, 1998; Krantz & Burton, 1986).  In addition, human and 

nonhuman primate experiments have shown that although low-status individuals pay attention to 

group members of any status, high-status group members attend selectively to one another 

(Lansu et al., 2013; Shepherd, Deaner, & Platt, 2006).  Therefore, we hypothesized that (1) 

perceiver popularity would amplify the effect of target popularity on valuation system activity, 

i.e., that valuation system activity of popular (relative to unpopular) perceivers would be more 
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sensitive to status differences among group members, and (2) this effect would be driven by 

popular perceivers’ attenuated responses to less popular targets.   

Following the same analytic procedures as for the target popularity main effect analyses 

above, linear mixed-effects models (lme4 and lmerTest packages for R) with random intercepts 

at the subject (perceiver) level were used here to predict valuation activity parameter estimates.  

The models included fixed effects for target popularity, perceiver popularity, and their 

interaction term. As with the previous analyses, perceivers’ personal liking ratings of targets 

were included as a covariate and linear mixed-effect models were estimated using REML with 

the appropriate degrees of freedom calculated using the Kenward-Roger method (Kenward & 

Roger, 1997).  

We found that in addition to the main effect of target popularity (parameter estimate ± 

SE: 0.100 ± 0.037, P < 0.01), there was also an interaction such that the effect of target 

popularity on valuation activity was amplified for more popular perceivers (Fig. 6; 0.077 ± 

0.037, P < 0.05).  In other words, the valuation systems of popular perceivers were better 

calibrated to detecting the status differences among group members.  This result is not an artifact 

of popular perceivers liking more popular targets.  Consistent with our hypothesis and the 

aforementioned human and nonhuman primate findings (6, 37), the interaction effect was largely 

driven by an attenuation of responses to less popular targets in popular – but not unpopular – 

perceivers (Fig. 6).  Moreover, the main effect of perceiver popularity showed a nonsignificant 

trend in the opposite (i.e., negative) direction (0.122 ± 0.078, P = 0.13).  Considered in tandem, 

these results suggest that popular individuals demonstrate enhanced interpersonal sensitivity (i.e., 

attunement to group members’ status differences), whereas unpopular individuals show more 
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generalized interpersonal responsiveness  (i.e., elevated valuation responses to all group 

members regardless of status).   

Fig. 6. Interaction plot depicting popular (+1 SD, relative to -1 SD unpopular) perceivers’ 
enhanced attunement to group members’ status differences (shaded area represents 95% 
CI).  The main effect of target popularity on valuation activity (P < 0.01) was amplified for more 
popular perceivers (P < 0.05), suggesting their valuation systems were more sensitively 
calibrated to detecting status differences among group members.   By contrast, there was a 
nonsignificant main effect trend of perceiver popularity in the opposite (i.e., negative) direction 
(P = 0.13), suggesting the valuation systems of unpopular individuals demonstrate greater 
generalized interpersonal responsiveness  (i.e., elevated responses to all group members 
regardless of status).  
 
 
 

Perceiver popularity: Behavioral analysis of interpersonal sensitivity. Having 

established a link between perceiver popularity and a neural measure of interpersonal sensitivity, 

we examined whether this finding would be corroborated using a social psychological 

(behavioral) measure of social acuity.  During the behavioral (first) session, the same participants 
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assessed each of their group members on a range of personality traits; in addition, they predicted 

how each of their group members’ judged them on these same traits.  In this computerized 

paradigm (E-Prime 2.0), participants used a sliding visual analog scale (anchored by the labels 

“not very” and “very” on opposite ends) to judge the extent to which trait adjectives described 

each group member and also predict how each group member would judge them on these traits. 

We computed the Pearson correlation between each perceiver’s predicted personality profile 

(i.e., the perceiver’s predictions about how a specific group member would judge the perceiver 

on various personality attributes) and the corresponding individual’s actual personality profile of 

the perceiver (i.e., how that particular group member actually judged the perceiver on various 

personality attributes).  In other words, a single correlation coefficient was computed for each 

dyadic pairing of matched predicted-actual personality profiles across all trait items.  These 

dyadic predicted-actual profile relationships were transformed using Fisher’s r-to-z 

transformation (i.e., from Pearson correlation coefficients to Fisher z scores) and aggregated to 

compute each perceiver’s average profile relationship (across the perceiver’s twelve predicted-

actual profile relationships, one for each of the other twelve group members).   

The resulting individual-difference measure of social acuity—termed overall meta-

accuracy (Carlson, Furr, & Vazire, 2010)—was then correlated with perceiver popularity.  

Consistent with our prediction, perceivers’ popularity was positively associated with their 

accuracy in predicting how individual group members assessed their personality across all items 

(r = 0.44; P < 0.05, two-tailed; see Fig. 7).  This finding corroborates the neural perceiver 

popularity result and its interpretation as reflecting enhanced interpersonal sensitivity.  Further, it 

dovetails with previous research demonstrating that popular adults and children more accurately 

perceive network members’ interpersonal sentiments (7, 35, 36). 
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Fig. 7.  Popular perceivers were more accurate in their predictions of how individual members of 
their organization assessed their personality across all trait items (r = 0.44; P < 0.05, two-tailed; 
n = 26).  We computed the Pearson correlation between each perceiver’s predicted personality 
profile (i.e., the perceiver’s predictions about how a specific group member would judge the 
perceiver on various personality attributes) and the corresponding individual’s actual personality 
profile of the perceiver (i.e., how that particular group member actually judged the perceiver on 
various personality attributes).  In other words, a single correlation coefficient was computed for 
each dyadic predicted-actual personality profiles across all trait items.  These dyadic pairings of 
matched predicted-actual profile relationships were transformed from Pearson correlation 
coefficients to Fisher z scores using Fisher’s r-to-z transformation and aggregated to compute 
each perceiver’s average profile relationship (across the perceiver’s twelve predicted-actual 
profile relationships, one for each of the other twelve group members).  The resulting individual-
difference measure of social acuity  (i.e., perceiver mean correlations plotted along the y-axis) 
reflects Fisher z scores that have been transformed back into Pearson correlations to aid 
interpretation.  
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Discussion 

Taken together, the present results provide the first examination of neural mechanisms 

tracking popularity.  Using a naturalistic face-viewing task, we identified two kinds of neural 

systems activated during encounters with members of real-world social networks. Affective 

valuation regions may assign motivational significance to group members based on their 

sociometric popularity and, in turn, may mediate engagement of social cognition regions that 

support understanding their mental states. 

This neural mechanism presents adaptive features for navigating interactions within 

complex social networks.  Tracking group members’ status serves vital functions supported by 

valuation regions, e.g., assigning motivational importance to particular individuals, monitoring 

and detecting their presence, and signaling they deserve privileged status in attention and 

decision-making (Azzi et al., 2012; Klein & Platt, 2013; Klein et al., 2009; Krienen et al., 2010; 

Watson & Platt, 2012).  In an experimental demonstration of this principle, rhesus macaques 

were willing to sacrifice fruit juice in order to view faces of high-status group members, while 

requiring overpayment of juice to view low-status monkeys’ faces (Deaner, Khera, & Platt, 

2005).  Given the valuation system’s critical role in reward processing and reinforcement 

learning (Haber & Knutson, 2009), this mechanism may also provide intrinsically rewarding 

reinforcement that motivates proximity and preferential attention to popular individuals as well 

as incentivizing interactions with them (Henrich & Gil-White, 2001; Klein et al., 2009; Lansu et 

al., 2013; Moreno, 1934; Vaughn & Waters, 1981).  At the group-level, this neural mechanism 

may help stabilize social networks over time, thereby contributing to the self-reinforcing nature 

of social status (Magee & Galinsky, 2008; Solomon, 1942). 
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The mediation analysis suggests that the valuation system translates group members’ 

popularity into motivational value signals that mediate activation of social cognition systems 

critical for explicit attributions about group members’ psychological states and characteristics.  

Given our motivation to understand high-status individuals’ mental states and predict their 

behavior (Dépret & Fiske, 1993; Fiske, 1993; Snodgrass, 1985, 1992), this neural mechanism 

may be both adaptive and socially advantageous: upon observing popular group members, it 

could proactively set in motion social-cognitive processes that facilitate social interaction.   

The social advantage of this neural mechanism is further suggested by the results of our 

individual-differences analysis showing that perceivers’ own popularity correlated with how 

strongly their valuation systems tracked network members’ popularity.  These intriguing findings 

are consistent with two views of how perceivers’ own status relates to their perceptions of others.  

One view comes from the social psychological literature on power, which suggests that 

having low power or subordinate status imbues other people with heightened relevance that 

motivates more careful attention to them and their perspectives (Fiske, 1993; Galinsky, Magee, 

Inesi, & Gruenfeld, 2006; Keltner, Gruenfeld, & Anderson, 2003).  Our data suggest that 

differences in popularity may function in a similar way: as illustrated in Fig. 6, unpopular 

perceivers (left panel) demonstrated elevated valuation responses to all group members 

regardless of their status; by contrast, popular individuals (right panel) demonstrated valuation 

responses that scaled with targets’ status.  These results dovetail with evidence that although 

low-ranking monkeys and unpopular humans pay attention to group members of any status, their 

high-status counterparts attend selectively to one another (Lansu et al., 2013; Shepherd et al., 

2006).   
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Another view consistent with our data is that popular individuals achieve their status 

because they are particularly skilled social perceivers.  At the behavioral level, heightened 

interpersonal acuity has been linked to popularity in social networks of children (Krantz & 

Burton, 1986) and adults (Bondonio, 1998; Casciaro, 1998), and we likewise found that popular 

individuals more accurately predicted how individual group members viewed them.  The 

findings in Fig. 6 could thus be interpreted as evidence at the neural level of popular individuals’ 

enhanced social attunement, i.e., that their valuation systems were better calibrated to the social 

structure.  On this view, perceivers’ valuation responses to others might not reflect a 

consequence of perceivers’ own status, but rather a determinant of how much status they 

ultimately achieve.   

Consistent with this account which causally prioritizes valuation regions’ functioning as 

influencing status, primate and rodent studies have shown that lesions to orbital prefrontal cortex 

and amygdala resulted in disrupted social behavior and loss of status, and manipulation of 

serotonergic neurotransmission and synaptic efficacy in mPFC influenced social skills, affiliative 

behavior, and changes in status (Wang, Kessels, & Hu, 2014).  Although such experimental 

manipulations cannot be conducted in human research, the paradigm advanced here could be 

implemented longitudinally to investigate whether individual differences in the valuation 

system’s social sensitivity are important determinants and/or consequences of one’s ability and 

motivation to affiliate with group members and achieve status.  Understanding the causal 

mechanisms underlying such individual differences in humans could have implications for 

clinical conditions such as depression and developmental disorders such as autism spectrum 

disorders, in which diminished interpersonal sensitivity, affiliative motivation, and social 



www.manaraa.com

40 

interaction have been linked to atypical valuation system structure and function (Chevallier, 

Kohls, Troiani, Brodkin, & Schultz, 2012; Healey, Morgan, Musselman, Olino, & Forbes, 2014). 

More broadly, our findings are consistent with prior research showing that other aspects 

of network membership may also relate to the structure and function of valuation and social 

cognition systems.  Recent studies [reviewed in (Dunbar, 2012)] have reported that individuals’ 

social network size and/or complexity correlated with gray matter in vmPFC (Lewis, Rezaie, 

Brown, Roberts, & Dunbar, 2011; Powell, Lewis, Roberts, García-Fiñana, & Dunbar, 2012), 

amygdala (Bickart, Hollenbeck, Barrett, & Dickerson, 2012; Bickart, Wright, Dautoff, 

Dickerson, & Barrett, 2010; Kanai, Bahrami, Roylance, & Rees, 2012), and left TPJ (Lewis et 

al., 2011).  Moreover, individual macaques’ gray matter in mPFC and regions approximating 

human TPJ covary with both social network size (which was experimentally assigned) and social 

status (Noonan et al., 2014; Sallet et al., 2011).  These findings support the proposition that 

affective valuation and social cognition systems are critical for navigating complex social 

networks and achieving high status within them. 

Here it is important to note that prior neuroimaging studies examining processing of 

another dimension of social status – dominance – have not consistently implicated the valuation 

and social cognition systems observed here, but rather regions of lateral prefrontal cortex and 

inferior parietal lobe (Chiao, 2010).  These differing findings could reflect the possibility that the 

relative dominance and sociometric popularity of group members are represented by different 

types of brain systems.  But they could also reflect differences in methodology.  Whereas our 

stimuli depicted members of participants’ real-world groups in order to study naturally occurring 
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variability in social status,3 other human neuroimaging studies focusing on dominance have 

tended to experimentally manipulate social status with less naturalistic stimuli [see (Chiao, 2010) 

for review]. Our expectation is that for voluntary identity groups of comparable scale (8-79) 

where similar structural dynamics are observed, the findings reported here should be robust 

(Davis, 1970; Hallinan, 1974).  As scale increases, mutual observation becomes impossible. 

Consequently the structuring dynamics of networks change (Bearman, 1997). Likewise, in 

groups with strong formal hierarchies, different dynamics may be observed. Future work could 

address these and other questions about the neural mechanisms that track popularity, specifically, 

and other kinds of social status in a wide range of social networks more generally. 

In conclusion, this study advances an experimental paradigm that models group 

members’ everyday encounters using a naturalistic task and personalized stimuli.  In so doing, 

we provide an interdisciplinary framework that integrates theories and methods from social 

psychology, neuroscience (fMRI), and sociology (SNA) to enable research on the brain 

mechanisms underlying person perception and social cognition processes in real-world, status-

laden social networks.  

  

                                            
3 Note that the nonhuman primate studies in which valuation regions were found to track group 
members’ status (Azzi et al., 2012; Klein & Platt, 2013; Watson & Platt, 2012) also utilized 
similarly naturalistic stimuli (i.e., faces of group members). 
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Introduction 

Social scientists have long sought to understand the interpersonal forces that 

differentially attract group members to one another and shape how affective ties evolve within a 

network structure. For decades this line of research has been pursued primarily within a 

sociological framework that emphasizes social-structural phenomena, among the most important 

of which is reciprocity, long recognized as one of the key mechanisms underlying the evolution 

of social network ties in human groups (Bearman, 1997; Ekeh, 1968; Gouldner, 1960; Homans, 

1958; E. E. Jones & Gerard, 1967; Leifer, 1981). Yet humans are a social species and it is likely 

that our brains have evolved under selective pressures to effectively navigate relationships within 

our dynamic social networks. Therefore, there are likely neural mechanisms associated with 

social-structural phenomena that shape interpersonal dynamics (e.g., reciprocity). At least since 

Freud, psychologists have postulated that an individual’s intrapersonal processes and implicit 

motivations may explain the ways in which relationships unfold (Freud, 1910, 1912). With the 

emergence of behaviorism, interpersonal attraction was conceptualized as determined by reward 

value attributed to another person (Byrne, 1971; Newcomb, 1960) and reciprocity as emerging 

from the mutual reinforcement of this reward value between interacting dyad members 

(Newcomb, 1960).  In this way a social-structural phenomenon like reciprocity—the key 

building block of social order—can be understood in regard to the intrapersonal processes 

through which it emerges. This article extends this line of inquiry by looking within the brain 

and identifies the neural underpinnings of reciprocity in human groups.  

Advancements in functional neuroimaging (functional magnetic resonance imaging; 

fMRI) have made it possible for social scientists to investigate implicit psychological processes 

via their neural correlates.  More recently, the brain-as-predictor approach has leveraged neural 
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markers as predictors of participants’ attitudes and behavior outside of the scanner (for review 

see (Berkman & Falk, 2013)).  This approach has leveraged implicit neural measures of 

valuation to predict within-subject effects such as participants’ unique preferences and choice 

behavior between various consumer products (Levy, Lazzaro, Rutledge, & Glimcher, 2011; 

Tusche, Bode, & Haynes, 2010), although to date such within-subject paradigm have not been 

extended to predict individuals’ idiosyncratic social preferences. In neuroimaging research on 

social phenomena, the brain-as-predictor approach has typically been employed to explain 

differences between individuals; for instance, valuation system activity in response to erotic 

images, in-group happy facial expressions, and scenes depicting social interactions have been 

used to predict individual differences in participants’ future sexual behavior, number of new in-

group friendships formed, and daily time spent around other people, respectively (Demos, 

Heatherton, & Kelley, 2012; Powers, Chavez, & Heatherton, 2015). Human neuroimaging 

research has documented that the same brain regions which track individuals’ subjective 

valuation of nonsocial objects also undergird social preferences: ventromedial prefrontal cortex 

(vmPFC), ventral striatum (VS), and amygdala, which together comprise the brain’s core 

valuation system (Adolphs, 2003; Behrens, Hunt, Woolrich, & Rushworth, 2008; Chen, Welsh, 

Liberzon, & Taylor, 2010; Doré et al., 2014; Fareri & Delgado, 2014; Fehr & Camerer, 2007; 

Güroğlu et al., 2008; Izuma, Saito, & Sadato, 2008; R. M. Jones et al., 2011; Lin, Adolphs, & 

Rangel, 2012). Therefore, by extending the brain-as-predictor approach to within-subject social 

preferences, it should be possible to predict individual group members’ personal allocation of 

affect and affiliation within the context of a complex social network. 

We pursued this objective in the present study where we identify an implicit neural 

measure of interpersonal valuation that prospectively predicts how group members’ liking ties 
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evolve over time and reveal how reciprocity emerges in human groups. Specifically, we 

hypothesized that implicit measures of interpersonal valuation—operationalized by valuation-

related neural activity in vmPFC, VS, and amygdala—could be leveraged to predict how new 

group members’ liking ties would develop over the course of an intensive summer program. The 

study population consisted of 16 students involved in labor organizing who volunteered to spend 

nine weeks together. Over the course of the nine weeks, students spent time in smaller groups as 

well in the larger collective. 

At the beginning of the program (T1), participants viewed faces of every other social 

network member while whole-brain fMRI data were collected. These neuroimaging data were 

analyzed against sociometric measures of liking collected at the beginning and end of the 

program (T2), as well as against individual node-level attributes (e.g., various demographic and 

personality variables).  We find that greater neural activity in these valuation regions when an 

ego viewed an alter at T1 predicted ego’s liking of the alter at T2, even when controlling for 

ego’s initial liking as well as other potential confounds and predictors of eventual liking. More 

surprisingly, an ego’s future liking of an alter was additionally predicted by alter’s valuation 

activity at T1 when viewing ego.  We propose several alternative interpretations of these 

intriguing results and suggest that they provide insight into the neural underpinnings of 

reciprocity.  More broadly, this study advances a novel paradigm for researching the links 

between inter- and intra-personal mechanisms of social ties and their network structure.  

Methods 

Participants. Participants were 16 students who volunteered to spend nine weeks 

together to organize workers. All participants received monetary compensation and provided 
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informed consent following the standards of the Columbia University Institutional Review 

Board. 

Procedure and design. The T1 component of the study was comprised of two sessions.  

In a preliminary session, sociometric instruments and self-report questionnaires were 

administered, and photographs were taken of participants’ faces (to be used subsequently in the 

fMRI face-viewing task). In a second session, participants underwent fMRI scanning while 

completing the face-viewing task described below tasks described below.  For all computerized 

tasks in both T1 sessions, stimulus presentation and behavioral data acquisition were controlled 

using E-Prime 2.0 (Psychology Software Tools, Inc.). The T2 wave of data collection included 

sociometric assessments (described below) administered via Qualtrics online survey software 

after conclusion of the nine-week summer program. Additional data were collected for the 

purposes of other studies. 

Sociometric assessment.  Sociometric assessments of group members’ affiliative 

relations and resulting network structure were conducted via a computerized peer-rating 

paradigm in which participants rated how much they liked each group member (presented in 

randomized order) on a sliding visual analog scale ranging from 0 to 100 anchored by the labels 

“not very” and “very” on opposite ends.  This sociometric instrument provided a continuous 

measure of personal liking (i.e., affiliation tie strength) between group members. 

Round-robin fMRI face-viewing task.  Stimuli for the fMRI face-viewing task were 

prepared from photographs of participants.  During the preliminary session, participants’ faces 

were photographed with affectively neutral facial expression and gaze directed straight at the 

camera.  These photographs were cropped and converted to grayscale images with equal 

luminance.  In addition, a “ghost face” stimulus image representing the superimposition of all 
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group members’ faces was prepared for each group following methods used in prior face 

perception research (Taylor et al., 2009).  The face-viewing task implemented a rapid event-

related design that included 10 repetitions of each stimulus face presented in pseudorandomized 

order.  Faces were presented for 1000ms and interstimulus intervals (ISIs) consisting of white 

fixation cross on black background were jittered between 1500 ms and 11500 ms (mean duration 

of ISI=3500 ms).  Egos viewed faces of alters while performing a simple cover task (Taylor et 

al., 2009) in order to maintain their alertness throughout.  Specifically, participants were 

instructed to press a button with their pointer (second) finger each time a group member’s face 

was presented and a different button with their ring (fourth) finger each time a “ghost face” was 

presented (~9% of total presentations). Visual stimuli presented during the fMRI scanning 

session were displayed on a projection screen using a LCD projector and viewed via a rear-

projecting mirror. 

Valuation system regions-of-interest (ROIs). We first independently defined brain 

regions-of-interest (ROIs) related to valuation in a separate sample of participants (these data 

were published previously in (Zerubavel et al., 2015)). Following the established analytic 

approach of previous neuroimaging studies, the monetary incentive delay (MID) task (Knutson 

et al., 2000) was used to independently define regions active during anticipation and receipt of 

monetary rewards (Tamir & Mitchell, 2012; Zaki et al., 2011).  We then defined 8-mm radius 

spherical ROIs surrounding activation peaks that fell within our a priori ROIs (and, for the 

subcortical structures, constrained them with anatomical masks).  The activation peaks we found 

in the vmPFC, VS, and amygdala are consistent with previous neuroimaging studies using the 

MID (Fig. #) (Hommer et al., 2003; Knutson et al., 2000; Tamir & Mitchell, 2012; Zaki et al., 

2011).  Replicating our previous analytic protocol (Zerubavel et al., 2015), parameter estimates 
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extracted from the vmPFC, VS, and amygdala and VS were averaged together to compute a 

composite measure of valuation system activity during the face-viewing task. 

Imaging acquisition and analysis.  Whole-brain fMRI data were acquired on a 1.5 Tesla 

GE system.  High-resolution anatomical images with 1mm × 1mm × 1mm resolution were 

acquired with a T1-sensitive SPGR sequence at the end of the scan session.  Functional images 

were acquired with a T2*-sensitive EPI blood oxygenation level dependent (BOLD) sequence.  

Functional images were preprocessed using SPM8 software (Wellcome Department of 

Cognitive Neurology, UCL), including slice-timing correction, motion-correction, realignment, 

coregistration between each participant’s functional and anatomical data, normalization to a 

standard template (Montreal Neurological Institute; MNI) using segmentation parameters, 3mm 

isometric voxels, and spatial smoothing using a Gaussian kernel (full-width at half-maximum = 

6mm). 

fMRI data were subjected to a first level of regression, separately for each subject, using 

an ordinary-least-squares general linear model (GLM) implemented with Neuroelf v0.9c 

software (neuroelf.net). Task-based regressors are described below. The GLM included, in 

addition to the task-related regressors, the 6 motion parameters as estimated during realignment 

as well as a DCT-based basis set covering low-frequency up to 1/80Hz to account for signal 

variability introduced by head motion and temporal drifts. The GLM also included one regressor 

for each target face (including the ghost face stimulus), representing the 10 repetitions of each 

respective face (12 repetitions for the ghost face). Each of these regressors was created by 

convolving the canonical hemodynamic response function (HRF) with a series of boxcars 

representing the 1000 ms intervals during which a particular face was presented. The output of 

these first-level regressions was a series of parameter estimate (beta) maps used in the next group 
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level of analyses. Beta maps corresponding to trials on which participants viewed the ghost face 

were discarded prior to the next level of analyses.  

Results 

Independently defined valuation regions of interest (ROIs; see Methods) were 

interrogated for patterns of neural activity during the face-viewing task conducted at the 

beginning of the summer program (T1).  Do group members’ value-related neural responses to 

one another at T1 predict their ultimate liking after completing the summer program (T2)?  To 

answer our primary question, we developed a model for regressing an ego’s T2 liking against T1 

valuation system activity (i.e., activation parameter estimates extracted from valuation ROIs; see 

Methods) as well as other potential predictors. This model and the subsequent analyses were 

approached using the nonparametric multiple regression quadratic assignment procedure 

(MRQAP) (Krackhardt, 1988), a standard method for analyzing social network data and 

performing the appropriate statistical significance tests with conservatively estimated standard 

errors (Dekker, Krackhardt, & Snijders, 2007). MRQAP handles row and column autocorrelation 

among observations in such data (e.g., interdependencies in liking ties sent and received by a 

given group member as ego or alter) by simultaneously permuting both the rows and the columns 

of matrix variables. 
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Fig. 8.  (A) Valuation system regions of interest (ROIs). Core brain regions underlying valuation 
(vmPFC, VS, amygdala) were independently defined based on a functional localizer task 
conducted in a separate sample of participants (see Methods). Parameter estimates extracted 
from the vmPFC, VS, and amygdala and VS were averaged together to compute a composite 
measure of valuation system activity during the face-viewing task (15). (B) Social network 
structure of idiosyncratic valuation system activity during face-viewing task. Directional arrows 
represent idiosyncratic valuation activity of ego (participant in the fMRI scanner) while viewing 
alter (group member whose face was depicted as stimulus during fMRI scan). Social network 
structure of idiosyncratic liking relations directed from ego to alter (C) at T1 and (D) at T2. For 
visual clarity, only ties in the upper quartile are displayed in (B), (C), and (D). vmPFC, 
ventromedial prefrontal cortex; VS, ventral striatum. 
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Predicting future liking. In our primary analysis regressing T2 liking based against T1 

valuation system activity, we found that this relationship was indeed positive and significant (β = 

0.175; P = 0.009). In other words, an ego’s valuation activity in response to an alter presented 

during the face-viewing task at the beginning of the summer program (T1) predicted how much 

they ultimately liked that alter in the last week of the program (T2).   

A different hypothesis that would be consistent with this initial result is that valuation 

activity was directly tracking concurrent (T1) liking, which in turn predicted T2 liking.  To 

ensure that the association between activation of the valuation system and T2 liking was not 

merely due to both variables’ association with T1 liking, we again used the MRQAP model to 

regress T2 liking against valuation activity, this time controlling for their initial (T1) liking. This 

analysis yielded several findings that clarified how these variables interrelated. Not surprisingly, 

liking at T1 predicted liking at T2 (β = 0.264; P < 0.001), although T1 liking only accounted for 

6.95% of the variance in T2 liking (7.86% shared variance between T1 and T2 liking without 

including valuation activity as another predictor).  

Critical to our primary hypothesis, the positive association between initial valuation 

activity and future liking remained significant after controlling for T1 liking (β = 0.144; P = 

0.021), indicating this relationship is not merely driven by the effects of initial liking.  On the 

contrary, these findings suggest that explicit (self-reported liking) and implicit (neural marker of 

valuation) measures at T1 operate as largely independent predictors of an ego’s future liking of 

an alter. Considering together the results of this model and the primary analysis above, an ego’s 

neural valuation of an alter predicted their future liking, whether or not concurrent (T1) liking 

was partialled out. As an additional test of the possibility that valuation activity directly tracked 

T1 liking (which in turn predicted T2 liking), another bivariate QAP regression model was 
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conducted to assess the correlation between valuation activity and T1 liking. This association 

was not statistically significant (β = 0.117; P = 0.114) and descriptively weaker than that 

between valuation activity and T2 liking. 

We then conducted several robustness checks to rule out alternative explanations.  

Extending the sociological models described above, these regression analyses incorporated 

additional covariates to control for other potential predictors of affiliation (including 

demographic and personality attributes of egos and alters, as well as homophily on these 

characteristics). The results of these analyses demonstrated that, even when controlling for each 

of these potential confounds, T1 valuation activity consistently remained a significant predictor 

of T2 liking (all Ps < 0.05).  

This result, however, does not necessarily imply that group members’ idiosyncratic 

neural valuations of one another at the beginning of the summer predict their idiosyncratic liking 

upon completing the program. Rather, our results might be driven by individual-level effects of 

egos, if the individuals who generally exhibited greater valuation activity (across all alters) were 

the same people who also generally liked everyone more at T2. The data did not support this 

alternative account, however, as the ego row averages (i.e., outdegree centrality effects) for 

valuation activity and T2 liking were not significantly correlated (R = 0.230; P = 0.392). 

Alternatively, individual-level alter effects might also account for our results, if certain alters 

who generally elicited greater valuation activity across all egos were also the same individuals 

who ultimately became at T2 the most collectively liked (i.e., sociometrically popular) group 

members. In this vein, in a previous neuroimaging study of longer-acquainted social network 

members, we found that the valuation system activity elicited by alters tracked their (i.e., alters’) 

sociometric popularity even when this group consensus differed from the participant’s own 
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personal preferences (Zerubavel et al., 2015). In the current study, we observed that alter column 

averages (i.e., indegree centrality effects) for valuation activity and liking received by alters at 

T1 were highly correlated (R = 0.634; P = 0.008), meaning that valuation activity elicited by 

alters did track their concurrent (T1) sociometric popularity. But while the valuation activity 

elicited by alters did track their concurrent (T1) sociometric popularity, it did not predict their 

future (T2) sociometric popularity (R = 0.058; P = 0.831; see Fig. 9). Based on these results we 

conclude that the association between valuation activity and future liking is not simply due to an 

individual-level effect of either alter or ego characteristics (i.e., outdegree or indegree centrality 

effects, respectively).  
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Fig. 9. Valuation activity elicited by alters tracks their concurrent (T1) sociometric popularity, 
but does not predict their future (T2) sociometric popularity. (A) Alter column averages (i.e., 
indegree centrality effects) for valuation activity and liking received by alters at T1 were highly 
correlated (r = 0.634; P = 0.008). (B) By contrast, this same neural index was not correlated with 
liking received by alters at T2 (r = 0.058; P = 0.831). 
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To directly test our interpretation that the results reflect idiosyncratic effects (i.e., unique 

to a particular ego about a particular alter) additional MRQAP models were implemented using 

variables that had been simultaneously mean-centered by ego and alter. Conceptualized through 

the lens of social network analysis, for each sociomatrix—valuation activity, T1 and T2 liking—

this mean-centering procedure simply subtracted the row means and column means to remove 

any individual-level effects of outdegree and indegree centrality, respectively. Incorporating 

these variables mean-centered on ego and alter, we found that group members’ unique neural 

valuation responses to one another did not track their unique patterns of idiosyncratic liking at 

T1 (β = 0.089; P = 0.171; see Fig. 11a). It is therefore striking that these idiosyncratic neural 

valuation responses did predict how much a particular ego would uniquely like a particular alter 

at T2 (β = 0.179; P = 0.009; see Fig. 11b), even when controlling for the ego’s idiosyncratic 

liking of that alter at T1 (β = 0.158; P = 0.014). These analyses provide direct evidence in 

support of the hypothesis that neural processes link idiosyncratic valuation to future (T2) 

idiosyncratic liking. 

Neural mechanisms underlying the emergence of reciprocity. What kind of 

mechanism might explain our findings that group members’ unique valuation activity in response 

to one another predicts their unique liking at T2—but not in the present at T1? The previous 

analyses clearly indicated that a plausible mechanism will not operate on the individual-level 

(i.e., via ego and/or alter effects) and that we should instead focus our search for candidate 

mechanisms that link idiosyncratic valuation and liking variables at the dyadic or relational level.  

Based on classical social theory and decades of empirical research spanning sociology, 

social psychology, and network analysis more generally, reciprocity is the relation-level 

phenomenon most implicated in the dynamics of affiliative ties and the evolution of their 
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network structure (Bearman, 1997; Ekeh, 1968; Gouldner, 1960; Homans, 1958; E. E. Jones & 

Gerard, 1967; Leifer, 1981). In our data, at the behavioral level, the mutual reciprocation of 

idiosyncratic liking increased dramatically over the course of the summer program: at T1, unique 

liking from ego-to-alter and alter-to-ego shared only 2% variance (multiple R2 = 0.022; adjusted 

R2 = 0.017), compared to more than 20% by T2 (multiple R2 = 0.218; adjusted R2 = 0.215; see 

Fig. 10). Furthermore, an ego’s idiosyncratic liking of an alter at T2 was predicted by the 

reciprocal alter’s idiosyncratic liking of the ego at T1 (β = 0.177; P = 0.007), even when 

controlling for the ego’s T1 idiosyncratic liking of the alter (β = 0.143; P = 0.016). These 

behavioral findings indicate that (a) the two dyad members’ (idiosyncratic) interpersonal 

sentiments toward each other became much more closely aligned from T1 to T2, and (b) T2 

idiosyncratic liking was influenced not just by one’s own (i.e., ego-to-alter) T1 idiosyncratic 

liking, but also by the other dyad member’s T1 idiosyncratic liking toward the ego.  
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Fig. 10. Mutual reciprocation of idiosyncratic liking increased dramatically over the course of 
the summer program. (A) At T1, unique liking from ego-to-alter and alter-to-ego shared only 2% 
variance (multiple R2 = 0.022; adjusted R2 = 0.017). (B) By T2, this behavioral index of 
reciprocity had risen to more than 20% shared variance (multiple R2 = 0.218; adjusted R2 = 
0.215). To illustrate the extent of reciprocity at each time point, idiosyncratic liking from ego-to-
alter and alter-to-ego are plotted on the x-axis and y-axis, respectively. Perfect reciprocity 
between dyad members is indicated by the dashed line, y = x. Descending levels of reciprocity 
are indicated by the regions colored red (highest), orange, yellow, and green (lowest). 
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This led us to ask, what are the neural mechanisms underlying how dyadic reciprocity 

emerges? First, we considered the behavioral finding that an ego’s T2 idiosyncratic liking of an 

alter was influenced by that alter’s T1 idiosyncratic liking of ego and investigated the possibility 

of an analogous predictor at the neural level. Substantiating this premise, we found that unique 

ego-to-alter liking at T2 was predicted by unique alter-to-ego neural valuations at T1 (β = 0.208; 

P = 0.0018; see Fig. 11d). In relation to our primary hypothesis (i.e., a participant’s neural 

valuation responses to others would predict his/her own unique liking of them in the future), this 

finding presents evidence in support of the reciprocal phenomenon: ego’s unique neural 

valuation response to an alter predicted that alter’s idiosyncratic future liking of ego. Finally, a 

comprehensive MRQAP model simultaneously regressed unique T2 ego-to-alter liking against 

four predictors: (1) an ego’s T1 idiosyncratic liking of an alter; (2) the reciprocal alter’s T1 

idiosyncratic liking of ego; (3) an ego’s idiosyncratic valuation response to an alter; and (4) an 

alter’s idiosyncratic valuation responses to an ego. Corroborating the results of the previous 

analyses, we found that each of these four variables positively and significantly predicted an 

ego’s idiosyncratic future liking of an alter (Ps < 0.05), with the exception of a trend-level effect 

in the same direction for an alter’s unique liking of an ego at T1 (P = 0.051).  

These results suggest that our future liking of group members can be jointly predicted by 

how our brains respond to them and how their brains respond to us. Moreover, these implicit 

neural measures of interpersonal valuation independently and reciprocally predict both dyad 

members’ future liking above and beyond the effects of explicit measures (i.e., their self-reported 

liking of each other) collected at the same time.  

Further elucidating the underlying mechanism, we found that an ego’s unique neural 

valuations of an alter tracked how much that alter idiosyncratically liked the particular ego at T1 
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(β = 0.141; P = 0.029; see Fig. 11c), yet not their own (i.e., ego-to-alter) idiosyncratic liking at 

the same time point (β = 0.089; P = 0.171; see Fig. 11a). This pattern of results suggests that an 

ego’s valuation system might be more sensitively tuned to an alter’s unique interpersonal 

appraisals rather than to his/her own.   

 

Fig. 11. (A) Egos’ idiosyncratic neural valuation responses to alters did not significantly track 
their own (i.e., ego-to-alter) patterns of idiosyncratic liking at T1 (β = 0.089; P = 0.171). (B) 
These same (i.e., ego-to-alter) idiosyncratic neural valuation responses significantly predicted 
egos’ future liking of alters at T2 (β = 0.179; P = 0.009). (C) The extent to which ego uniquely 
liked alter at T1 was tracked by alter’s idiosyncratic valuation responses to ego (β = 0.141; P = 
0.029). (D) These same (i.e., alter-to-ego) patterns of neural valuation activity also predicted 
ego’s future idiosyncratic liking of alters at T2 (β = 0.208; P = 0.0018). 
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Could this finding indicate that an ego’s patterns of valuation system activation to various 

alters reflect his or her metaperceptions of idiosyncratic alter-to-ego liking (i.e., predictions made 

by egos of how much they are uniquely liked by the other group members)? This hypothesis was 

tested—but not supported—using self-reported metaperception data we collected at T1. In other 

words, an ego’s idiosyncratic neural valuations of an alter did not track how much that ego 

expected that alter uniquely liked them (β = 0.063; P = 0.334). Although metaperceptions are 

typically conceptualized as an ego’s explicit judgments of how much they are liked by alters, 

perhaps valuation system activity reflects an ego’s implicit metaperceptions that are not 

consciously accessible to them (i.e., based on their explicit self-report measures). In support of 

this interpretation, an ego’s idiosyncratic valuation response to an alter tracked how much that 

alter idiosyncratically liked him/her at T1, even controlling for the ego’s explicit 

metaperceptions of how much the alter idiosyncratically liked them. In fact, when both were 

entered as simultaneous predictors of an alter’s idiosyncratic liking of an ego, ego’s unique 

valuation responses remained significant (β = 0.135; P = 0.039) while his/her explicit 

metaperceptions did not (β = 0.098; P = 0.13). 

Discussion 

We set out to investigate neural predictors of future liking, hypothesizing that the brain’s 

valuation system might function as an implicit measure of interpersonal attraction that could be 

unobtrusively probed in order to predict how liking ties evolve within a social network. In the 

technical sense, our hypothesis was indeed supported by our findings: the extent to which an 

ego’s valuation system was engaged in response to an alter at the beginning of the summer 

program did predict their future liking of that same alter after completing the program, even 

controlling for initial (explicitly reported) liking. However, although the neural index we 
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advanced did in fact predict future liking, the specific patterns of results we obtained suggest the 

underlying neural mechanism is much more interpersonally sophisticated than we had 

anticipated.  

One interpretation follows closely from our hypothesis: the valuation system activity 

captured in our paradigm does in fact reflect an implicit measure of ego’s affiliative motivation 

toward alter. In this regard, valuation activity could be conceptualized as a sort of “seed” 

representing latent interpersonal attraction yet to become manifest in interpersonal behavior, or 

even possibly the consciousness of ego. In support of this interpretation, we find that unique ego-

to-alter valuation activity is not only associated with ego-to-alter idiosyncratic liking at T2, but 

also with alter’s T1 metaperception of how much they are uniquely liked by ego. This would 

mean that one’s own liking of another at T1 is not consciously accessible to oneself (or at least 

self-reported) at that time but is consciously accessible to the other. What remains unclear by this 

account is why ego-to-alter unique valuation activity is associated with alter-to-ego—but not 

ego-to-alter—idiosyncratic liking at T1 and, to a lesser extent, why it is (descriptively) more 

predictive of T2 idiosyncratic liking from alter-to-ego than from ego-to-alter.  

Another interpretation is that unique ego-to-alter valuation activity does not primarily 

reflect ego’s future liking of alter, but is instead attuned to how much alter uniquely likes ego. In 

support of this interpretation, we find that ego-to-alter idiosyncratic valuation tracks alter-to-ego 

idiosyncratic liking at T1. Yet if this account were true then it would also necessarily entail a 

discrepancy between implicit and explicit valuation measures; specifically, by this account, 

idiosyncratic valuation activity (a) reflects an implicit measure of alter-to-ego idiosyncratic T1 

liking but (b) does not correlate with an ego’s self-reported metaperception of how much an alter 

uniquely likes them.   



www.manaraa.com

62 

The first account presents idiosyncratic valuation activity as a window into one’s “true” 

idiosyncratic interpersonal attraction to others. We only realize it ourselves later, but others see it 

for what it is from the start and it tracks how much they like us already. If this is the case, we 

observe a truly interpersonal neural mechanism in so far as the implicit social valuation signal it 

generates is realized by others before us, and moreover guides, reflects, and tracks others’ 

idiosyncratic liking before our own. By contrast, the second account presents the valuation 

system not as representing one’s own (yet unrealized) social valuation of others, but rather 

others’ unique valuation of us, which we do not yet appreciate explicitly but which we later 

reciprocate in our idiosyncratic liking of them. This interpretation also therefore presents the 

valuation system as fundamentally interpersonal in the sense that it is sensitively attuned to 

others’ unique liking of us, which is later incorporated into our own liking of others. By both 

accounts, group members’ valuation systems interdependently constitute the neural mechanisms 

underlying the emergence of reciprocity in affective ties and, more generally, the evolution of 

social network structure.  



www.manaraa.com

63 

 

 

 

 

 

 

 

 

 

 

Study 3: 

Neural Measure of Enhanced Self-Valuation Tracks Trait Narcissism and Predicts Unpopularity  
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Introduction 

Throughout the history of psychology, theorists and researchers alike have been drawn to 

exploring phenomena at the interface of our intrapersonal and interpersonal realms. 

Psychologists have documented countless ways in which people differentially—and often 

preferentially—perceive, evaluate, and respond to information concerning themselves versus 

others. Considered in sum, the psychological literature indicates that such enhanced self-

perception biases are motivated and pervasive (Alicke & Sedikides, 2009, 2011; S. C. Jones, 

1973; Leary, 2007), possibly even universal (Allport, 1937). Yet they also evidence considerable 

variability across persons, indicated by individual-difference measures of dispositional 

narcissism and self-enhancement bias (e.g., discrepancy between self-perception and other-

perception or an objective criterion) (Alicke, 1985; Campbell, Brunell, & Finkel, 2006; 

Campbell, Reeder, Sedikides, & Elliot, 2000; Grijalva & Zhang, 2016; Kwan, John, Kenny, 

Bond, & Robins, 2004; Morf, Horvath, & Torchetti, 2011).  

This multifaceted individual-difference construct—narcissistic self-enhancement—

incorporates complementary intrapersonal and interpersonal strategies that mutually enhance 

self-perception: inflated valuation of self (and relative devaluation of others); attentional focus 

on oneself (and insensitivity to others); impulsive gratification of egoistic motivations (at the 

expense of others’ concerns and long-term welfare) (Campbell, Rudich, & Sedikides, 2002; Morf 

et al., 2011; Morf & Rhodewalt, 2001; Roberts & Robins, 2000; Vazire & Funder, 2006). Social 

psychologists have documented that narcissistic tendencies of enhanced self-perception pose 

fundamental long-term obstacles to maintaining positive interpersonal evaluations and successful 

relationships (Campbell & Campbell, 2009; Morf & Rhodewalt, 2001; Vazire & Funder, 2006). 

Although individual differences in dispositional narcissism and related self-enhancement 
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tendencies may initially engender affiliation and favorable impressions, they ultimately predict 

sociometric unpopularity (i.e., being disliked by peers) in longitudinal studies of face-to-face 

groups (Leckelt, Küfner, Nestler, & Back, 2015; Paulhus, 1998). Establishing mechanistic links 

from intrapersonal processes underlying enhanced self-perception to such long-term 

interpersonal consequences has remained a principal aim for researchers in this field.  

The present longitudinal study integrates functional neuroimaging (fMRI) and social 

network analysis (SNA) in order to investigate the intrapersonal mechanisms underlying 

narcissistic self-enhancement, the resultant long-term obstacles to maintaining sociometric 

popularity, and help elucidate the intrapersonal-interpersonal gap in between. We theorized that 

fMRI could be used to unobtrusively probe valuation processes that undergird inflated self-

valuation and relative devaluation of others while group members engage in a naturalistic social 

perception task that elicits evaluative representations of each individual (including oneself).  

Specifically, we hypothesized that brain regions involved in social valuation—

ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and amygdala—would be 

implicated in this narcissistic self-enhancement pattern of increased activation elicited by oneself 

and relatively decreased activated elicited in response to others. These densely interconnected 

regions (Haber & Knutson, 2009), are consistently implicated in processing the affective value 

and motivational significance of other people (Adolphs, 2003; Doré et al., 2014; Güroğlu et al., 

2008; Haber & Knutson, 2009; Krienen et al., 2010; Zerubavel et al., 2015; Zink et al., 2008). If 

the psychological processes underlying narcissistic self-enhancement depend on the relative 

value and motivational significance of oneself relative to others, then this pattern would likely be 

expressed in vmPFC, VS, and/or amygdala. Based on this logic, the present study sought to 

identify a neural measure of individual differences in inflated self-valuation that would relate to 
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individual differences in trait narcissism (to establish convergent validity) but not self-esteem (to 

establish discriminant validity). Further, this neural measure should be inversely related to 

sociometric popularity in established social networks (i.e., groups in which members have 

already undergone extended acquaintanceship), but not in social networks whose group members 

are just minimally acquainted. Because the detrimental social outcomes associated with 

narcissism typically manifest only with intimacy and increasing levels of acquaintance (Leckelt 

et al., 2015; Paulhus, 1998), the longitudinal sample provided an opportunity to test whether the 

neural index of narcissistic self-valuation would (1) be unrelated (or perhaps even positively 

related) to initial sociometric popularity, and (2) prospectively predict perceivers’ eventual 

unpopularity, even controlling for their initial (i.e., concurrent) unpopularity. 

Methods 

 Study 3 incorporates both the Study 1 and Study 2 datasets. The cross-sectional data from 

Study 1 is used to identify a plausible neural measure of narcissistic self-enhancement; then, the 

longitudinal data from Study 2 is incorporated to replicate these correlational findings and extend 

them to prospectively predict sociometric unpopularity. As such, the methods for Study 3 

recapitulate those delineated in Study 1 and Study 2. Several additional methodological details 

are noted below. For all participants, individual differences in dispositional narcissism were 

measured by the 16-item Narcissistic Personality Inventory (NPI-16)(Ames, Rose, & Anderson, 

2006). For the participants in Study 1, individual differences in self-esteem were measured by 

the Single-Item Self-Esteem Scale (SISE)(Robins, Hendin, & Trzesniewski, 2001). Finally, 

Study 3 additionally utilized parameter estimate (beta) maps corresponding to trials on which 

participants viewed their own face (which had been discarded prior to second-level analyses in 

Study 2 and Study 3).  
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Results 

Our primary analyses investigated reward-related neural activity during the face-viewing 

task as a function of whose face was presented (self versus other) and individual-difference 

measures (at the perceiver level) associated with narcissistic self-valuation. First, we tested 

whether individual differences in perceivers’ dispositional narcissism predicted 

disproportionately high neural activity in response to seeing oneself versus other group members. 

We conducted separate mixed-effects models for each valuation ROI (with random intercepts 

included to address cross-nesting of perceiver and target levels), each regressing ROI neural 

activity against (1) an indicator variable to indicate whether the face being viewed at the time 

was one’s own versus that of another participant (group member), (2) dispositional trait 

narcissism score as assessed by the NPI-16 questionnaire measure, and (3) the interaction of the 

previous two variables. Across all three ROIs, we observed a main effect of stimulus type such 

that viewing one’s own face elicited more neural activity than did others’ faces (all Ps < 0.05). 

Perceivers’ trait narcissism significantly amplified the strength of this self-face enhancement 

effect in vmPFC (P < 0.01) and VS (P < 0.05), while only a trend-level self*NPI interaction was 

found in the amygdala ROI (P = 0.08).  

This same modeling procedure was likewise implemented to test whether elevated 

engagement of valuation ROIs while viewing one’s own face (relative to others’) was related to 

participants’ unpopularity (i.e., a negative association with sociometric popularity). As with the 

analysis of trait narcissism above, we conducted separate mixed-effects models for each 

valuation ROI in which neural activity was regressed against (1) indicator variable for stimulus 

type (self-face versus other-face), (2) sociometric popularity, and (3) these two variables’ 

interaction. Once again, neural activity in both vmPFC and VS exhibited a main effect of self-
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face enhancement (Ps < 0.05) that interacted with perceivers’ individual differences, in this case 

a negative association with sociometric popularity (Ps < 0.05). In the amygdala ROI, however, 

perceiver popularity did not significantly dampen the self-face enhancement effect (P > 0.3).  

Considered together, the analyses above converged upon the same pattern of results: in 

vmPFC and VS ROIs, the extent to which one’s own face (versus others’) elicited heightened 

neural activation was significantly associated with participants’ trait narcissism (positively) and 

sociometric popularity (negatively); by contrast, in models of amygdala ROI activity, neither of 

these interaction effects surpassed statistical significance thresholds. The amygdala ROI was 

therefore not included in subsequent analyses, while parameter estimates extracted from vmPFC 

and VS ROIs were averaged together to compute a unitary measure of neural valuation.  

These findings suggested to us that disproportionately high engagement of valuation 

ROIs (i.e., vmPFC and VS, collectively) during self-perception relative to other-perception could 

provide a neural index of narcissistic self-valuation. Convergent validity for this interpretation of 

the neural measure was evidenced by its relationship with individual differences in perceivers’ 

trait narcissism (P < 0.005; see Fig. 12 and sociometric (un)popularity (P < 0.005; see Fig. 13). 
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Fig. 12. Self-enhancement bias expressed in valuation system activity, a main effect of self-face 
which was amplified by individual differences in dispositional narcissism.  
 
 
 

 

Fig. 13. Self-enhancement bias expressed in valuation system activity, a main effect of self-face 
which was mitigated by sociometric popularity.  
 

In addition, we found of evidence of discriminant validity for this neural measure of 

narcissistic self-valuation in the result that it was unrelated to perceivers’ self-report measure of 

self-esteem (P > 0.6; see Fig. 14). 
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Fig. 14. Self-enhancement bias expressed in valuation system activity, a main effect of self-face 
which was not moderated by individual differences in self-esteem.  
 

We then turned to a separate study sample in order to replicate our previous results and 

extend them in two important ways. This longitudinal study sample completed the fMRI face-

viewing task and first round of sociometric data collection within less than a week of group 

members all meeting one another, which allowed us to ask:  

(1) Do our previous findings of heightened valuation activity to one’s own (relative to 

others’) face generalize to social contexts in which the other viewed are those of newly 

acquainted group members?  

(2) Does our neural index of narcissistic self-valuation prospectively predict future 

(un)popularity? If so, does this effect hold even controlling for initial popularity? Finally, does 

our implicit neural measure predict future (un)popularity better than does an explicit measure of 

narcissism? 

Following the same mixed-effects modeling as before, we replicated the finding that 

valuation activity exhibited a main effect of self-face enhancement (Ps < 0.05) that was 

amplified by perceivers’ dispositional narcissism (P < 0.05; see Fig. 15). 



www.manaraa.com

71 

 

Fig. 15. Self-enhancement bias expressed in valuation system activity, a main effect of self-face 
which was amplified by individual differences in dispositional narcissism. This replicates the 
effects illustrated in Fig. 12 using a social context in which self-face was compared to faces of 
minimally acquainted—as opposed to well-acquainted—others.  
 
 
 In our earlier analysis of the relationship between initial sociometric (un)popularity and 

valuation activity, the latter was treated as the dependent variable. While no causal directionality 

of this relationship had been assumed, this modeling approach achieved greater statistical power 

by leveraging valuation activity as a dependent variable with multiple observations per 

participant.4 In the present analysis, however, we sought to evaluate whether T2 (un)popularity 

could be prospectively predicted by a neural measure of narcissistic self-enhancement, and thus 

T1 brain data could only be appropriately characterized as a predictor variable. To this end, we 

computed an individual-difference variable reflecting narcissistic self-valuation using social 

relations analyses conducted in the TripleR package for R (Schönbrodt, Back, & Schmukle, 

                                            
4 This rationale likewise applies to the mixed-effect models in which dispositional narcissism 
was included as the individual-difference predictor variable. Whereas each subject-level variable 
(e.g., dispositional narcissism, sociometric popularity at T1 or T2) by definition provides only 
one data point per participant, the valuation activity data collected in this round-robin design 
constitute many observations per participant. 
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2012). Specifically, we utilized the self-enhancement index developed by Kwan and colleagues 

(Kwan, John, Kenny, Bond, & Robins, 2004) for round-robin designs, which simultaneously 

compares self-perceptions against perceptions of others and perceptions and perceptions by 

others. In other words, this social relations analysis conceptualizes self-enhancement bias as the 

extent to which one’s self-about-self ratings exceed both self-about-other ratings and other-

about-self ratings. Here we implemented this social relations modeling approach with 

interpersonal “ratings” consisting of neural activity in valuation ROIs; as with explicit trait 

ratings, these neural valuations were (implicitly) generated by each perceiver about each target 

(including, crucially, oneself). In the context of our data, Kwan and colleagues’ (2004) self-

enhancement index reflects the extent to which an individual perceiver disproportionately 

engaged valuation ROIs while viewing one’s own face compared to both (a) self viewing others’ 

faces as well as (b) others viewing self’s face. This neural index of narcissistic self-valuation 

thus simultaneously accounts both for perceiver-level confounds (i.e., how much each perceiver 

generally engages valuation ROIs when viewing targets) and target-level confounds (i.e., how 

much valuation activity each target generally elicits from perceivers).  

Using this neural measure, we found that self-enhancement bias in valuation activity at 

the beginning of the summer program (T1) was unrelated to perceivers’ current sociometric 

popularity (P > 0.9; see Fig. 16a). However, it did predict their future (T2) unpopularity at the 

end of the summer program (P < 0.05; see Fig. 16b and Fig. 17c), even when controlling for 

initial popularity (P < 0.05). Moreover, T2 (un)popularity was better predicted by this implicit 

measure of narcissistic self-enhancement than by the explicit (self-report questionnaire) measure 

of narcissism. When both were entered as simultaneous predictors of T2 popularity, the neural 

index—but not the NPI-16—exhibited a statistically significant effect (P < 0.05 and P > .7, 
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respectively). By itself, the neural measure of narcissistic self-valuation predicted almost 25% of 

the variance in T2 popularity (R2 = 0.241).  

 

Fig. 16. Self-enhancement bias in valuation activity at the beginning of the summer program 
(T1) was (A) unrelated to perceivers’ current sociometric popularity (P > 0.9), but (B) did 
predict their future (T2) unpopularity at the end of the summer program (P < 0.05; even when 
controlling for initial popularity). 
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Returning to the two social networks we had analyzed earlier, we now performed the 

social relations analysis of self-enhancement (Kwan, John, Kenny, Bond, & Robins, 2004) on 

their valuation activity data as well. This provided us an equivalent subject-level neural measure 

of narcissistic self-valuation for each participant across all three social networks. The 

relationship between this neural index and sociometric (un)popularity is illustrated in Fig. 17 

separately for each network and also all three together. Aggregating the subject-level data across 

all three networks, valuation ROIs’ self-enhancement bias was a consistent and robust predictor 

of perceiver (un)popularity, overall accounting for 24% of its variance (P < 0.001). 

Discussion 

 The results of the present study demonstrate for the first time that fMRI can be used to 

pick up on neural markers of inflated self-valuation while participants merely view photos of 

their own and others’ faces. This neural measure tracks individual differences in perceivers’ 

dispositional narcissism (providing convergent validity) but not self-esteem (providing 

discriminant validity). In addition, it is negatively associated with concurrent sociometric 

popularity in social networks whose group members are well-acquainted. By contrast, in a social 

network whose group members are only minimally acquainted, this neural index of inflated self-

valuation is unrelated to perceivers’ concurrent (i.e., initial) popularity but prospectively predicts 

their ultimate unpopularity several months later. In fact, we found that T2 (un)popularity was 

better predicted by this implicit measure of narcissistic self-enhancement than by the explicit 

(NPI-16 questionnaire) measure of narcissism.  

Social psychologists have long hypothesized and also found preliminary empirical 

support for the notion that narcissistic self-enhancement biases undermine healthy relationships 

by orienting disproportionately toward oneself rather than others. The results of the present study  
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Fig. 17. Illustration of the negative relationship between the neural index of narcissistic self-
valuation and sociometric popularity for each of the social networks separately (A-C) and also 
all three together (D). 
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elucidate a plausible neural mechanism underlying this effect: heightened activation in brain 

regions underlying valuation—vmPFC and VS—engaged during self-perception (relative to 

other-perception). Given these brain regions’ critical role in reward processing and reinforcement 

learning (Haber & Knutson, 2009), disproportionate engagement while orienting toward oneself 

(relative to others) may also provide intrinsically rewarding reinforcement that motivates such 

self-focused attention (rather than incentivizing proximity to others and social interactions with 

them). In other words, the neural mechanism of inflated self-valuation identified in this study 

may contribute to the self-reinforcing nature of narcissistic self-enhancement.  

More generally, this study pioneers a novel approach to conducting neuroimaging 

research on social perception processes by integrating analytic techniques of Social Relations 

Modeling (SRM). In the present research, the SRM analytic approach was leveraged in order to 

generate implicit neural measures of narcissistic self-valuation, that is, enhanced activation of 

neural valuation regions when perceiving oneself relative to both perceiving others and being 

perceived by others. This approach could be extended to investigating the neural bases of other 

self-perception biases—not just enhanced self-valuation—during a naturalistic face-viewing 

task. The SRM conceptualization of self-perception recognizes that people function 

simultaneously as both perceivers and targets of their own social perception (Kwan, John, 

Kenny, Bond, & Robins, 2004). By integrating the SRM approach, neuroimaging research would 

benefit from a sociological insight first advanced by symbolic interactionists: self-perception is 

inextricably linked to interpersonal perception (Cooley, 1902; Goffman, 1978; Mead, 1934); by 

extension, neuroscientific and psychological understanding of the intrapersonal mechanisms 

underlying social phenomena would be greatly advanced by appreciating the interpersonal 

context in which they naturalistically occur. 
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